Surface analytical characterization of horizontal and vertical nanotopographies at the silicon/silicon oxide/electrolyte phase boundaries

Oberflächenanalytische Charakterisierung Horizontaler und Vertikaler Nanotopographien an der Silicium/Siliciumoxid/Elektrolyt Phasengrenzfläche

  • Nanotopography development induced by photoelectrochemical in situ conditioning of silicon is followed using a combination of surface sensitive analysis techniques. In an etching study, vertical nanostructure analysis reveals a buried stressed layer within silicon, identified by Brewster-angle analysis (BAA). In conjunction with in system synchrotron radiation photoelectron spectroscopy (SRPES), a superior quality hydrogen terminated Si(111) surface could be prepared by obliteration of the intermediate stressed layer. Using a novel photoelectrochemical structure formation method, a variety of vertical nanotopographies has been generated and analyzed by in situ Brewster-angle reflectometry (BAR) and scanning probe microscopy (SPM). Shaping of the nanostructures became possible by real-time monitoring using BAR. Appearances range from aligned single nanoislands with improved aspect ratio to connected Si nano-networks. A model was developed to describe the nanostructure formation based on stress-induced selective oxidation. IncreasedNanotopography development induced by photoelectrochemical in situ conditioning of silicon is followed using a combination of surface sensitive analysis techniques. In an etching study, vertical nanostructure analysis reveals a buried stressed layer within silicon, identified by Brewster-angle analysis (BAA). In conjunction with in system synchrotron radiation photoelectron spectroscopy (SRPES), a superior quality hydrogen terminated Si(111) surface could be prepared by obliteration of the intermediate stressed layer. Using a novel photoelectrochemical structure formation method, a variety of vertical nanotopographies has been generated and analyzed by in situ Brewster-angle reflectometry (BAR) and scanning probe microscopy (SPM). Shaping of the nanostructures became possible by real-time monitoring using BAR. Appearances range from aligned single nanoislands with improved aspect ratio to connected Si nano-networks. A model was developed to describe the nanostructure formation based on stress-induced selective oxidation. Increased local photo-oxidation is found to result in the formation of extended horizontal micro- and nanostructures with fractal properties. Within a defined light intensity range, the structures reveal the azimuthal symmetry of the investigated crystal planes (111), (100), (110) and (113). The observed features could be reproduced using a model that is based on the interplay of stress in silicon, oxidation by light generated excess holes and locally increased etching in fluoride containing solution.show moreshow less
  • Die durch photoelektrochemische in situ Verfahren induzierte Nanostrukturbildung auf Silicium wird durch eine Kombination oberflächenempfindlicher Methoden untersucht. Durch schrittweise Abtragung eines Oberflächenoxids und durch die Analyse vertikaler Nanostrukturen wird eine verborgene Streßschicht mit Hilfe der Brewster-Winkel Analyse ermittelt. In Verbindung mit Synchrotron-Photoelektronenspektroskopie kann eine optimierte H-Terminierung von Si(111)-Oberflächen nach Entfernen des gestreßten Bereiches erzielt werden. Durch Anwendung einer neuartigen photoelektrochemischen Methode wurde eine Vielzahl vertikaler Nanostrukturen erzeugt, deren Morphologie Aspekt-optimierte nanoskopische Inseln sowie Nanostruktur-Netzwerke umfaßt. In Modellbetrachtungen wird eine streß-induzierte selektive Oxidation als Bildungsmechanismus vorgeschlagen. Verstärkte lokale Photooxidation wiederum führt zur Bildung ausgebreiteter Mikro- und Nanostrukturen, die in einem mittleren Bereich der Lichtintensität die azimutale Symmetrie der jeweiligen (111),Die durch photoelektrochemische in situ Verfahren induzierte Nanostrukturbildung auf Silicium wird durch eine Kombination oberflächenempfindlicher Methoden untersucht. Durch schrittweise Abtragung eines Oberflächenoxids und durch die Analyse vertikaler Nanostrukturen wird eine verborgene Streßschicht mit Hilfe der Brewster-Winkel Analyse ermittelt. In Verbindung mit Synchrotron-Photoelektronenspektroskopie kann eine optimierte H-Terminierung von Si(111)-Oberflächen nach Entfernen des gestreßten Bereiches erzielt werden. Durch Anwendung einer neuartigen photoelektrochemischen Methode wurde eine Vielzahl vertikaler Nanostrukturen erzeugt, deren Morphologie Aspekt-optimierte nanoskopische Inseln sowie Nanostruktur-Netzwerke umfaßt. In Modellbetrachtungen wird eine streß-induzierte selektive Oxidation als Bildungsmechanismus vorgeschlagen. Verstärkte lokale Photooxidation wiederum führt zur Bildung ausgebreiteter Mikro- und Nanostrukturen, die in einem mittleren Bereich der Lichtintensität die azimutale Symmetrie der jeweiligen (111), (100), (110) und (113) Kristallorientierungen widerspiegeln. Modellhafte Simulationen basieren auf der Wechselwirkung von Streß im Siliciumkristall, lichtgenerierter Oxidation und erhöhter lokaler Materialabtragung in konzentrierter Ammoniumfluoridlösung.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Michael Lublow
URN:urn:nbn:de:kobv:co1-opus-14390
Referee / Advisor:Prof. Dr. Jürgen Reif
Document Type:Doctoral thesis
Language:English
Year of Completion:2009
Date of final exam:2009/12/10
Release Date:2010/02/26
Tag:Oberflächenanalyse; Optik; Selbstorganisierte elektrochemische Systeme; Silicium
Optics; Self-organized electrochemical systems; Silicon; Surface analysis
GND Keyword:Siliciumdioxid; Oberflächenanalyse
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Experimentalphysik und funktionale Materialien
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Experimentalphysik / Materialwissenschaften
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.