Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-522529

Influence of pore architecture and chemical structure on the sodium storage in nitrogen‐doped hard carbons

  • Hard carbon is the material of choice for sodium ion battery anodes. Capacities comparable to those of lithium/graphite can be reached, but the understanding of the underlying sodium storage mechanisms remains fragmentary. A two‐step process is commonly observed, where sodium first adsorbs to polar sites of the carbon (“sloping region”) and subsequently fills small voids in the material (“plateau region”). To study the impact of nitrogen functionalities and pore geometry on sodium storage, a systematic series of nitrogen‐doped hard carbons is synthesized. The nitrogen content is found to contribute to sloping capacity by binding sodium ions at edges and defects, whereas higher plateau capacities are found for materials with less nitrogen content and more extensive graphene layers, suggesting the formation of 2D sodium structures stabilized by graphene‐like pore walls. In fact, up to 84% of the plateau capacity is measured at potentials less than 0 V versus metallic Na, that is,Hard carbon is the material of choice for sodium ion battery anodes. Capacities comparable to those of lithium/graphite can be reached, but the understanding of the underlying sodium storage mechanisms remains fragmentary. A two‐step process is commonly observed, where sodium first adsorbs to polar sites of the carbon (“sloping region”) and subsequently fills small voids in the material (“plateau region”). To study the impact of nitrogen functionalities and pore geometry on sodium storage, a systematic series of nitrogen‐doped hard carbons is synthesized. The nitrogen content is found to contribute to sloping capacity by binding sodium ions at edges and defects, whereas higher plateau capacities are found for materials with less nitrogen content and more extensive graphene layers, suggesting the formation of 2D sodium structures stabilized by graphene‐like pore walls. In fact, up to 84% of the plateau capacity is measured at potentials less than 0 V versus metallic Na, that is, quasimetallic sodium can be stabilized in such structure motifs. Finally, gas physisorption measurements are related to charge discharge data to identify the energy storage relevant pore architectures. Interestingly, these are pores inaccessible to probe gases and electrolytes, suggesting a new view on such “closed pores” required for efficient sodium storage.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:K. Schutjajew, Jonas Pampel, W. Zhang, M. Antonietti, M. Oschatz
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Small
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:3 Gefahrgutumschließungen; Energiespeicher
3 Gefahrgutumschließungen; Energiespeicher / 3.1 Sicherheit von Gefahrgutverpackungen und Batterien
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Wiley Online Library
Jahrgang/Band:17
Ausgabe/Heft:48
Erste Seite:2006767
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Anode; Hard Carbon; Sodium Ion Batteries; Storage Mechanism
Themenfelder/Aktivitätsfelder der BAM:Energie
DOI:10.1002/smll.202006767
URN:urn:nbn:de:kobv:b43-522529
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY-NC - Namensnennung - Nicht kommerziell 4.0 International
Datum der Freischaltung:11.03.2021
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:11.03.2021
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.