Drugs and epigenetic molecular functions. A pharmacological data scientometric analysis

  • Interactions of drugs with the classical epigenetic mechanism of DNA methylation or histone modification are increasingly being elucidated mechanistically and used to develop novel classes of epigenetic therapeutics. A data science approach is used to synthesize current knowledge on the pharmacological implications of epigenetic regulation of gene expression. Computer-aided knowledge discovery for epigenetic implications of current approved or investigational drugs was performed by querying information from multiple publicly available gold-standard sources to (i) identify enzymes involved in classical epigenetic processes, (ii) screen original biomedical scientific publications including bibliometric analyses, (iii) identify drugs that interact with epigenetic enzymes, including their additional non-epigenetic targets, and (iv) analyze computational functional genomics of drugs with epigenetic interactions. PubMed database search yielded 3051 hits on epigenetics and drugs, starting in 1992 and peaking in 2016. Annual citations increased to a plateau in 2000 and show a downward trend since 2008. Approved and investigational drugs in the DrugBank database included 122 compounds that interacted with 68 unique epigenetic enzymes. Additional molecular functions modulated by these drugs included other enzyme interactions, whereas modulation of ion channels or G-protein-coupled receptors were underrepresented. Epigenetic interactions included (i) drug-induced modulation of DNA methylation, (ii) drug-induced modulation of histone conformations, and (iii) epigenetic modulation of drug effects by interference with pharmacokinetics or pharmacodynamics. Interactions of epigenetic molecular functions and drugs are mutual. Recent research activities on the discovery and development of novel epigenetic therapeutics have passed successfully, whereas epigenetic effects of non-epigenetic drugs or epigenetically induced changes in the targets of common drugs have not yet received the necessary systematic attention in the context of pharmacological plasticity.

Download full text files

Export metadata

Metadaten
Author:Dario KringelORCiDGND, Sebastian MalkuschORCiDGND, Jörn LötschORCiDGND
URN:urn:nbn:de:hebis:30:3-617572
DOI:https://doi.org/10.3390/ijms22147250
ISSN:1422-0067
Parent Title (English):International journal of molecular sciences
Publisher:Molecular Diversity Preservation International
Place of publication:Basel
Document Type:Article
Language:English
Date of Publication (online):2021/07/06
Date of first Publication:2021/07/06
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2021/07/26
Tag:computational knowledge-discovery; pharmacoepigenetics; pharmacological data science; pharmacological plasticity
Volume:22
Issue:14, art. 7250
Page Number:27
First Page:1
Last Page:27
HeBIS-PPN:484967215
Institutes:Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Open-Access-Publikationsfonds:Medizin
Licence (German):License LogoCreative Commons - Namensnennung 4.0