Structural and functional studies on E. coli Diacylglycerol Kinase by MAS NMR spectroscopy

  • The focus of this thesis is the integral membrane protein Escherichia coli diacylglycerol kinase (DGK). It is located within the inner membrane, where it catalyzes the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatic acid (PA). DGK is a unique enzyme, which does not share any sequence homology with typical kinases. In spite of its small size, it exhibits a notable complexity in structure and function. The aim of this thesis is the investigation of DGK’s structure and function at an atomic level directly within the native-like lipid bilayer using MAS NMR. This way, a deeper understanding of DGK’s catalytic mechanism should be obtained. First, the preparation of DGK was optimized, leading to a sample, which provides well-resolved MAS NMR spectra. The high quality MAS NMR spectra formed the foundation for the second step, the resonance assignment of DGK’s backbone and side chains. The assignment was performed at high magnetic field (1H frequency 850 MHz). The sequential assignment of immobile domains was carried out using dipolar coupling based 3D experiments, NCACX, NCOCX and CONCA. The measurement time could be reduced by paramagnetic doping with Gd3+-DOTA in combination with an E-free probehead. The sequential assignment was mainly performed using a uniformly labelled sample (U-13C,15N-DGK). Residual ambiguities could be resolved by reverse labelling (U-13C,15N-DGK-I,L,V). Resonances could be assigned for 82% of the residues, from which 74% were completely assigned. For validation, ssFLYA was applied, which is a generally applicable algorithm for the automatic assignment of protein solid state NMR spectra. Its principal applicability for demanding systems as membrane proteins could be proven for the first time. Overall, ~90% of the manually obtained assignments could be confirmed by ssFLYA. For the completion of DGK’s assignment, J-coupling based 2D experiments, 1H-13C/15N HETCOR and 13C-13C TOBSY, were carried out to detect highly mobile residues. This way, residues of the two termini and the cytosolic loop, which were not detectable by dipolar coupling based experiments, could be assigned tentatively. Whereupon, peaks for arginine and lysine were assigned unambiguously to Arg9 and Lys12. Overall, ~84% of the residues could be assigned by the applied NMR strategy. Furthermore, a secondary structure analysis was carried out. It showed substantial similarities between wild-type DGK, its thermostable mutant determined both by MAS NMR and the crystal structure of wtDGK. However, there are few differences around the flexible regions most likely caused by the high mobility of these regions. During the assignment procedure, no systematic peak doublets or triplets were detected, indicating that the DGK trimer adopts a symmetric conformation. This is in contrast to the X-ray structure, which shows asymmetries between the three subunits. Especially, crystal packing may be a potential source for these structural asymmetries. On the basis of the nearly complete assignment of DGK, the apo state was compared with the substrate bound states. Perturbations in peak position and intensity of the substrate bound states were analysed for all assigned residues in 3D and 2D spectra. The nucleotide-bound state was emulated by adenylylmethylenediphosphonate (AMP-PCP), a non-hydrolysable ATP analogue, whereas the DAG-bound state was mimicked by 1,2-dioctanoyl-sn-glycerol (DOG, chain length n = 8). Upon nucleotide binding, extensive chemical shift perturbations could be observed. These data provide evidence for a symmetric DGK trimer with all of its three active sites concurrently occupied. Additionally, it could be demonstrated that the nucleotide substrate induces a substantial conformational change. This most likely supports the enzyme in binding of the lipid substrate, indicating positive heteroallostery. In contrast, the overall alterations caused by DOG are very minor. They involve mainly changes in peak intensities. For DGK bound with either AMP-PCP+DOG or only AMP-PCP, a similar spectral fingerprint was observed. This implies that binding of the nucleotide seems to set the enzyme into a catalytic active state, triggering the actual phosphoryl transfer reaction. The investigation of DGK’s remarkable stability and the cross-talk between its subunits forms the last part of this thesis. This demands for the identification of key intra- and interprotomer contacts, which are of structural or functional importance. For this purpose, 13C-13C DARR and 2D NCOCX spectra with long mixing times were recorded using high field MAS NMR. Additionally, DNP-enhanced 13C−15N TEDOR experiments were conducted on mixed labelled DGK trimers to enable the visualization of interprotomer contacts. With the applied NMR strategy, intra- (Arg32 - Trp25/ Glu28/ Ala29 and Trp112 - Ser61) and interprotomer (ArgNn,e - AspCg/ GluCd/ AsnCg) long-range interactions could be identified.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kristin MöbiusGND
URN:urn:nbn:de:hebis:30:3-505901
Place of publication:Frankfurt am Main
Referee:Clemens GlaubitzORCiDGND, Volker DötschORCiDGND
Advisor:Clemens Glaubitz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/06/26
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/05/09
Release Date:2019/06/28
Page Number:194
HeBIS-PPN:450224678
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht