Dokument: PICASO: Eine individualisierte, patientenorientierte Plattform zur verbesserten Betreuung von Patienten mit rheumatoider Arthritis - Eine Betrachtung der Patientenseite

Titel:PICASO: Eine individualisierte, patientenorientierte Plattform zur verbesserten Betreuung von Patienten mit rheumatoider Arthritis - Eine Betrachtung der Patientenseite
Weiterer Titel:PICASO: The PICASO cloud platform for improved holistic care in rheumatoid arthritis treatment - experiences of patients
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=63488
URN (NBN):urn:nbn:de:hbz:061-20230904-162740-6
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Schwartz, Catarina Renée [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,85 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 28.08.2023 / geändert 28.08.2023
Beitragende:Prof. Dr. Richter, Jutta [Gutachter]
PD. Dr. Kiltz, Uta [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Die Versorgung chronisch erkrankter Patienten mit Komorbiditäten und stetig komplexer werdenden Behandlungskonzepten bedarf einer effizienten, sektorübergreifenden Koordination von Behandlungsplänen. Nur so ist eine (kosten-)effiziente Datennutzung, eine Optimierung von Managementprozessen und eine Vermeidung redundanter Diagnostik gewährleistet. Die Einbindung aller Beteiligten (Patienten/Behandler etc.) in die Koordination dieser Prozesse, wurde mit der Informations- und Kommunikations-Plattform (IKT) PICASO ermöglicht, entwickelt im Rahmen des Förderprogrammes der Europäischen Union „Horizon 2020“. Dieses IKT-Instrument mit aktiver Teilhabe am Behandlungs- und Genesungsprozess wird im Rahmen dieser Dissertationsschrift aus Sicht der Patienten evaluiert. Über einen Zeitraum von jeweils sechs Monaten waren 30 Patienten mit rheumatoider Arthritis (RA) und kardiovaskulärer/n Begleiterkrankung/en bzw. Risikofaktor/en in das PICASO Proof-of-concept Projekt eingeschlossen. Über Home-Monitoring-Geräte sowie individuelle Zugänge zu dem patientenspezifischen PICASO-Dashboard konnten die Patienten aktiv an ihrem Gesundheits- und Behandlungsprozess mitwirken. Die persönlichen Vorstellungen erfolgten zu planmäßig vorgesehenen Ambulanzterminen zum Einschluss-Zeitpunkt, nach drei und sechs Monaten. Als ein Teil des Projektes wurde ein umfangreiches Konzept zur Evaluation der Projektbestandteile durch die Patienten entwickelt. Dreißig RA-Patienten (80,0% weiblich) mit mittlerem Alter±Standardabweichung von 58,6±10,8 Jahren, einer Krankheitsdauer von 12,6±8,5 Jahren, einer milden Krankheitsaktivität (DAS28-CRP(4) 2,6±0,9) und 2,9±1,6 Komorbiditäten nahmen teil, sie waren IT-erfahren sowie Anfänger. Die Nutzungsadhärenz der Plattform durch die Patienten war hoch. Evaluationen des Dashboards zeigten insbesondere in den Bereichen Attraktivität, Durchschaubarkeit und Steuerbarkeit positive Bewertungen. Die meisten Teilnehmer (88,9%) waren mit dem Dashboard zufrieden und bewerteten die Nutzung als (eher) einfach. Es kam innerhalb des Untersuchungszeitraums zu einer Steigerung des Empowerments, bspw. setzten sich 48,3% der Patienten neue gesundheitsbezogene Ziele und 91,6% berichteten über eine erleichterte Arzt-Patienten-Kommunikation. Die PICASO-Plattform bietet eine moderne, IT-basierte Ergänzung zur aktuellen Regelversorgung von RA Patienten mit einem positiven Effekt auf das Empowerment und die Partizipation der Patienten am eigenen Behandlungsprozess. Die Integration der Anwendungen in den Alltag der Patienten konnten belegt werden. Die Effekte auf das Outcome der Patienten sowie die Anwendbarkeit der Plattform im klinischen Alltag über längere Zeiträume mit größeren Patientenkollektiven sind in Folgestudien zu prüfen.

The care of chronically ill patients with comorbidities and increasingly complex treatment concepts
requires efficient, cross-sectoral coordination of treatment plans. This is necessary to ensure (cost-)
efficient use of data, optimization of management processes and avoidance of redundant diagnostics.
The integration of all parties involved (patients/health care providers, etc.) in the coordination of these
processes was enabled with the information and communication platform (ICT) PICASO, developed as
part of the European Union's "Horizon 2020" funding program. The ICT tool with options for active
participation in the treatment and recovery process was evaluated from patients’ perspective.
Over a period of six months, 30 patients with rheumatoid arthritis (RA) and cardiovascular concomitant
disease(s) or risk factor(s) were included in the PICASO proof-of-concept project. Patients were able to
actively participate in their health and treatment process via home-monitoring devices and individual
access to their patient-specific PICASO dashboard. Face-to-face visits occurred during scheduled
outpatient appointments at inclusion, after three and six months. As a part of the project, a
comprehensive approach to patients’ evaluation of the project components was developed.
Thirty RA patients (80.0% female) with mean age±standard deviation of 58.6±10.8 years, disease
duration of 12.6±8.5 years, mild disease activity (DAS28-CRP(4) 2.6±0.9), and 2.9±1.6 comorbidities
participated; they were IT experienced as well as novice. Data collection showed high adherence.
Evaluations of the dashboard had positive ratings, especially in the areas of attractiveness, perspicuity
and dependability. Most participants (88.9%) were satisfied with the dashboard and rated its use as
(rather) easy. There was an increase in empowerment within the study period, for example, 48.3% of
patients set new health-related goals and 91.6% reported facilitated doctor-patient communication.
The PICASO platform offers a modern, IT-based supplement to the current standard care of RA patients
with a positive effect on patients' empowerment and participation in their own treatment process. The
integration of the applications into patients' everyday life could be proven. The effects on the outcome
of the patients as well as the applicability of the platform in the clinical routine care over longer periods
with larger patient collectives are to be examined in follow-up studies.
Quelle:1. Richter, J.G., et al., The PICASO cloud platform for improved holistic care in rheumatoid arthritis treatment-experiences of patients and clinicians. Arthritis Res Ther, 2021. 23(1): p. 151.
2. Agca, R., et al., EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Annals of the Rheumatic Diseases, 2017. 76(1): p. 17-28.
3. Combe, B., et al., EULAR recommendations for the management of early arthritis: report of a task force of the European Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis, 2007. 66(1): p. 34-45.
4. Alamanos, Y. and A.A. Drosos, Epidemiology of adult rheumatoid arthritis. Autoimmun Rev, 2005. 4(3): p. 130-6.
5. Albrecht, K., et al., [Medical treatment of rheumatoid arthritis in 2014 : Current data from the German Collaborative Arthritis Centers]. Z Rheumatol, 2017. 76(1): p. 50-57.
6. Symmons, D.P., Epidemiology of rheumatoid arthritis: determinants of onset, persistence and outcome. Best Pract Res Clin Rheumatol, 2002. 16(5): p. 707-22.
7. Symmons, D.P., et al., Blood transfusion, smoking, and obesity as risk factors for the development of rheumatoid arthritis: results from a primary care-based incident case-control study in Norfolk, England. Arthritis Rheum, 1997. 40(11): p. 1955-61.
8. Hedström, A.K., et al., Smoking and susceptibility to rheumatoid arthritis in a Swedish population-based case-control study. Eur J Epidemiol, 2018. 33(4): p. 415-423.
9. Chang, K., et al., Smoking and rheumatoid arthritis. Int J Mol Sci, 2014. 15(12): p. 22279-95.
10. Schneider, M., et al., [Management of early rheumatoid arthritis : Interdisciplinary guideline]. Z Rheumatol, 2020. 79(Suppl 1): p. 1-38.
11. Scott, D.L., F. Wolfe, and T.W. Huizinga, Rheumatoid arthritis. Lancet, 2010. 376(9746): p. 1094-108.
12. Aletaha, D., et al., 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum, 2010. 62(9): p. 2569-81.
13. Wolfe, F., et al., The mortality of rheumatoid arthritis. Arthritis & Rheumatism, 1994. 37(4): p. 481-494.
14. Gwinnutt, J.M., et al., Exploring the disparity between inflammation and disability in the 10-year outcomes of people with rheumatoid arthritis. Rheumatology (Oxford), 2022.
15. Combe, B., et al., 2016 update of the EULAR recommendations for the management of early arthritis. Ann Rheum Dis, 2017. 76(6): p. 948-959.
16. Fiehn, C., et al., S2 Leitlinien: Therapie der rheumatoiden Arthritis mit krankheitsmodifizierenden Medikamenten. 2018: AWMF online.
17. Smolen, J.S., et al., EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis, 2020. 79(6): p. 685-699.
18. Herold, G., Innere Medizin. 2021: De Gruyter.
19. Aviña-Zubieta, J.A., et al., Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum, 2008. 59(12): p. 1690-7.
20. Meune, C., et al., High risk of clinical cardiovascular events in rheumatoid arthritis: Levels of associations of myocardial infarction and stroke through a
61
systematic review and meta-analysis. Arch Cardiovasc Dis, 2010. 103(4): p. 253-61.
21. Agca, R., et al., EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis, 2017. 76(1): p. 17-28.
22. Peters, M.J., et al., EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis, 2010. 69(2): p. 325-31.
23. Crowson, C.S., et al., Rheumatoid arthritis and cardiovascular disease. Am Heart J, 2013. 166(4): p. 622-628.e1.
24. Giles, J.T., et al., Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum, 2010. 62(11): p. 3173-82.
25. Panoulas, V.F., et al., Prevalence and associations of hypertension and its control in patients with rheumatoid arthritis. Rheumatology (Oxford), 2007. 46(9): p. 1477-82.
26. Visser, H., Early diagnosis of rheumatoid arthritis. Best Pract Res Clin Rheumatol, 2005. 19(1): p. 55-72.
27. Gerhold, K., et al., Health-related quality of life in patients with long-standing rheumatoid arthritis in the era of biologics: data from the German biologics register RABBIT. Rheumatology (Oxford), 2015. 54(10): p. 1858-66.
28. Bundesgesundheitsministerium. E-Health. 22.10.2021]; Available from: https://www.bundesgesundheitsministerium.de/service/begriffe-von-a-z/e/e-health.html.
29. Eysenbach, G., What is e-health? J Med Internet Res, 2001. 3(2): p. E20.
30. Yazdany, J., et al., Methods for Developing the American College of Rheumatology's Electronic Clinical Quality Measures. Arthritis Care Res (Hoboken), 2016. 68(10): p. 1402-9.
31. Adhikesavan, L.G., et al., American College of Rheumatology quality indicators for rheumatoid arthritis: benchmarking, variability, and opportunities to improve quality of care using the electronic health record. Arthritis Rheum, 2008. 59(12): p. 1705-12.
32. Kerr, E.A. and R.A. Hayward, Patient-centered performance management: enhancing value for patients and health care systems. Jama, 2013. 310(2): p. 137-8.
33. Richter, J.G., et al., [Digital Health in Rheumatology - Status 2018/19]. Dtsch Med Wochenschr, 2019. 144(7): p. 464-469.
34. Strangfeld, A., et al., [Celebrating 33 years of the DRFZ: Epidemiology and Health Services Research]. Z Rheumatol, 2022: p. 1-8.
35. Richter, J.G., et al., Mobile Responsive App-A Useful Additional Tool for Data Collection in the German Pregnancy Register Rhekiss? Front Med (Lausanne), 2021. 8: p. 773836.
36. Pédirez-Rodríguez, R., et al., Usability, User Experience, and Acceptance Evaluation of CAPACITY: A Technological Ecosystem for Remote Follow-Up of Frailty. Sensors (Basel), 2021. 21(19).
37. Seppen, B.F., et al., Feasibility of Self-Monitoring Rheumatoid Arthritis With a Smartphone App: Results of Two Mixed-Methods Pilot Studies. JMIR Form Res, 2020. 4(9): p. e20165.
38. Richter, J.G., et al., Self-assessments of patients via Tablet PC in routine patient care: comparison with standardised paper questionnaires. Ann Rheum Dis, 2008. 67(12): p. 1739-41.
39. Revenas, A., et al., Mobile internet service for self-management of physical activity in people with rheumatoid arthritis: evaluation of a test version. RMD Open, 2016. 2(1): p. e000214.
40. Teare, H.J.A., et al., The RUDY study: using digital technologies to enable a research partnership. Eur J Hum Genet, 2017. 25(7): p. 816-822.
62
41. Forschung, B.f.B.u. Horizont 2020. [cited 2022 23.10.2022]; Available from: https://www.horizont2020.de/einstieg-kurzueberblick.htm.
42. PICASO, C. D2.3 The PICASO Architecture Specification. 2016 24.03.2022]; Available from: https://www.picaso-project.eu/deliverables/.
43. UNION, T.E.P.A.T.C.O.T.E. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). 2016 24.03.2022]; 27.04.2016:[Available from: http://data.europa.eu/eli/reg/2016/679/oj.
44. Richter, J.G., et al., Mobile App-based documentation of patient-reported outcomes - 3-months results from a proof-of-concept study on modern rheumatology patient management. Arthritis Res Ther, 2021. 23(1): p. 121.
45. Schrepp, M. Short UEQ Data Analysis Tool Version4. 2019 24.03.2022]; Available from: https://www.ueq-online.org/.
46. Laugwitz, B., T. Held, and M. Schrepp. Construction and Evaluation of a User Experience Questionnaire. 2008. Berlin, Heidelberg: Springer Berlin Heidelberg.
47. Schrepp, M., A. Hinderks, and J. Thomaschewski. Applying the user experience questionnaire (UEQ) in different evaluation scenarios. in International Conference of Design, User Experience, and Usability. 2014. Springer.
48. Schrepp, M. User Experience Questionnaire Handbook. 2015 [cited 2019 04.09.]; Available from: https://www.ueq-online.org/.
49. Schrepp, M., S. Olschner, and U. Schubert, User Experience Questionnaire (UEQ) Benchmark. Praxiserfahrungen zur Auswertung und Anwendung von UEQ-Erhebungen im Business-Umfeld, in Tagungsband UP13, H. Brau, et al., Editors. 2013, German UPA e.V.: Stuttgart. p. 348-354
50. van Riel, P.L. and L. Renskers, The Disease Activity Score (DAS) and the Disease Activity Score using 28 joint counts (DAS28) in the management of rheumatoid arthritis. Clin Exp Rheumatol, 2016. 34(5 Suppl 101): p. S40-s44.
51. Wells, G., et al., Validation of the 28-joint Disease Activity Score (DAS28) and European League Against Rheumatism response criteria based on C-reactive protein against disease progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on erythrocyte sedimentation rate. Ann Rheum Dis, 2009. 68(6): p. 954-60.
52. Fransen, J., G. Stucki, and P.L.C.M. van Riel, Rheumatoid arthritis measures: Disease Activity Score (DAS), Disease Activity Score-28 (DAS28), Rapid Assessment of Disease Activity in Rheumatology (RADAR), and Rheumatoid Arthritis Disease Activity Index (RADAI). Arthritis & Rheumatism, 2003. 49(S5): p. S214-S224.
53. Van Riel, P., The development of the disease activity score (DAS) and the disease activity score using 28 joint counts (DAS28). Clin Exp Rheumatol, 2014. 32(5 Suppl 85): p. S65-74.
54. Kuipers, J.G., Medal Rheumatologie : Kriterien für die Klassifikation, Diagnose, Aktivität und Prognose rheumatologischer Erkrankungen. 1. Aufl. ed, ed. J.G. Kuipers. 2006, Friedrichshafen: Wiskom.
55. Lautenschläger, J., et al., Vergleichende Evaluation einer deutschen Version des Health Assessment Questionnaires (HAQ) und des Funktionsfragebogens Hannover (FFbH). Zeitschrift für Rheumatologie, 1997. 56(3): p. 144-155.
56. Leeb, B.F., et al., RADAI-5 to monitor rheumatoid arthritis. Clin Exp Rheumatol, 2014. 32(5 Suppl 85): p. S-55-8.
57. König, H.-H., et al., Validity and responsiveness of the EQ-5D in assessing and valuing health status in patients with anxiety disorders. Health and quality of life outcomes, 2010. 8: p. 47-47.
58. Ludwig, K., J.G. von der Schulenburg, and W. Greiner, Valuation of the EQ-5D-5L with composite time trade-off for the German population - an exploratory study. Health Qual Life Outcomes, 2017. 15(1): p. 39.
63
59. Graf, J.M., et al., Die deutsche Version des EuroQol-Fragebogens. Journal of Public Health, 1998. 6(1): p. 3-20.
60. Reenen, M.v. and B. Janssen, EQ-5D-5L User Guide. 2015. 2.1.
61. EuroQol. Crosswalk Index Value Calculator. 2019 28.05.2020]; Available from: https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/valuation-standard-value-sets/crosswalk-index-value-calculator/.
62. Consortium, P. D8.6 Evaluation Framework. 2017 [cited 2023 10.01.]; Available from: https://www.picaso-project.eu/deliverables/.
63. Hense, S., et al., [Prevalence of rheumatoid arthritis in Germany based on health insurance data : Regional differences and first results of the PROCLAIR study]. Z Rheumatol, 2016. 75(8): p. 819-827.
64. Knitza, J., et al., Mobile Health Usage, Preferences, Barriers, and eHealth Literacy in Rheumatology: Patient Survey Study. JMIR mHealth and uHealth, 2020. 8(8): p. e19661-e19661.
65. Kelders, S.M., et al., Persuasive System Design Does Matter: A Systematic Review of Adherence to Web-Based Interventions. J Med Internet Res, 2012. 14(6): p. e152.
66. Vaghefi, I. and B. Tulu, The Continued Use of Mobile Health Apps: Insights From a Longitudinal Study. JMIR Mhealth Uhealth, 2019. 7(8): p. e12983.
67. Kiltz, U., et al., Electronic assessment of disease activity and functioning in patients with axial spondyloarthritis: challenges and unmet needs. Clin Exp Rheumatol, 2016. 34(5 Suppl 101): p. S57-s61.
68. Norton, S., et al., A study of baseline prevalence and cumulative incidence of comorbidity and extra-articular manifestations in RA and their impact on outcome. Rheumatology (Oxford), 2013. 52(1): p. 99-110.
69. Solomon, D.H., et al., Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis, 2006. 65(12): p. 1608-12.
70. Kleinert, S. and K. Krueger, [Cardiovascular comorbidity and its risk factors in rheumatoid arthritis]. Z Rheumatol, 2011. 70(6): p. 464-72.
71. Margolis, K.L., et al., Cardiovascular Events and Costs With Home Blood Pressure Telemonitoring and Pharmacist Management for Uncontrolled Hypertension. Hypertension (Dallas, Tex. : 1979), 2020. 76(4): p. 1097-1103.
72. Gruska, M., et al., Recommendations on the utilization of telemedicine in cardiology. Wien Klin Wochenschr, 2020. 132(23-24): p. 782-800.
73. Lindqvist, E., et al., Ten year outcome in a cohort of patients with early rheumatoid arthritis: health status, disease process, and damage. Ann Rheum Dis, 2002. 61(12): p. 1055-9.
74. Wiles, N.J., et al., Reduced disability at five years with early treatment of inflammatory polyarthritis: results from a large observational cohort, using propensity models to adjust for disease severity. Arthritis Rheum, 2001. 44(5): p. 1033-42.
75. Mollard, E. and K. Michaud, A Mobile App With Optical Imaging for the Self-Management of Hand Rheumatoid Arthritis: Pilot Study. JMIR Mhealth Uhealth, 2018. 6(10): p. e12221.
76. Gell, N.M., et al., Patterns of technology use among older adults with and without disabilities. Gerontologist, 2015. 55(3): p. 412-21.
77. Zarghom, S., D. Di Fonzo, and F.-H. Leung, Does Socioeconomic Status Affect Patients’ Ease of Use of a Touch-Screen (iPad) Patient Survey? Interact J Med Res, 2013. 2(1): p. e1.
78. Kataria, S. and V. Ravindran, Digital health: a new dimension in rheumatology patient care. Rheumatol Int, 2018. 38(11): p. 1949-1957.
79. Grazziotin, L.R., et al., Evaluation of Real-World Healthcare Resource Utilization and Associated Costs in Children with Juvenile Idiopathic Arthritis: A Canadian Retrospective Cohort Study. Rheumatol Ther, 2021. 8(3): p. 1303-1322.
80. McPhail, S.M., Multimorbidity in chronic disease: impact on health care resources and costs. Risk Manag Healthc Policy, 2016. 9: p. 143-56.
64
81. Salaffi, F., et al., Effectiveness of a telemonitoring intensive strategy in early rheumatoid arthritis: comparison with the conventional management approach. BMC musculoskeletal disorders, 2016. 17: p. 146-146.
82. Huscher, D., et al., Evolution of cost structures in rheumatoid arthritis over the past decade. Ann Rheum Dis, 2015. 74(4): p. 738-45.
83. Li, L., et al., Medication adherence has an impact on disease activity in rheumatoid arthritis: a systematic review and meta-analysis. Patient Prefer Adherence, 2017. 11: p. 1343-1356.
84. Mary, A., et al., Mobile Phone Text Messages and Effect on Treatment Adherence in Patients Taking Methotrexate for Rheumatoid Arthritis: A Randomized Pilot Study. Arthritis Care Res (Hoboken), 2019. 71(10): p. 1344-1352.
85. El Miedany, Y., et al., Toward electronic health recording: evaluation of electronic patient reported outcome measures (e-PROMs) system for remote monitoring of early systemic lupus patients. Clin Rheumatol, 2017. 36(11): p. 2461-2469.
86. Kampling, C., et al., [Self-monitoring in inflammatory rheumatic diseases]. Z Rheumatol, 2014. 73(8): p. 706-13.
87. Backman, W.D., et al., Shared decision-making for older adults with cardiovascular disease. Clin Cardiol, 2020. 43(2): p. 196-204.
88. Gossec, L., et al., An e-health interactive self-assessment website (Sanoia((R))) in rheumatoid arthritis. A 12-month randomized controlled trial in 320 patients. Joint Bone Spine, 2018. 85(6): p. 709-714.
89. Ragouzeos, D., et al., "Am I OK?" using human centered design to empower rheumatoid arthritis patients through patient reported outcomes. Patient Educ Couns, 2019. 102(3): p. 503-510.
90. Bravo, P., et al., Conceptualising patient empowerment: a mixed methods study. BMC Health Services Research, 2015. 15(1): p. 252.
91. Thomsen, T., et al., Motivational counselling and SMS-reminders for reduction of daily sitting time in patients with rheumatoid arthritis: a descriptive randomised controlled feasibility study. BMC Musculoskelet Disord, 2016. 17(1): p. 434.
92. Jacquemin, C., et al., Physical Activity Assessment Using an Activity Tracker in Patients with Rheumatoid Arthritis and Axial Spondyloarthritis: Prospective Observational Study. JMIR Mhealth Uhealth, 2018. 6(1): p. e1.
93. Navarro-Millán, I., et al., Perspectives of Rheumatoid Arthritis Patients on Electronic Communication and Patient-Reported Outcome Data Collection: A Qualitative Study. Arthritis Care Res (Hoboken), 2019. 71(1): p. 80-87.
94. Liu, L.H., et al., Patient and clinician perspectives on a patient-facing dashboard that visualizes patient reported outcomes in rheumatoid arthritis. Health Expect, 2020. 23(4): p. 846-859.
95. Quaedackers, L., et al., A Mobile App for Longterm Monitoring of Narcolepsy Symptoms: Design, Development, and Evaluation. JMIR Mhealth Uhealth, 2020. 8(1): p. e14939.
96. de Batlle, J., et al., Implementing Mobile Health–Enabled Integrated Care for Complex Chronic Patients: Patients and Professionals’ Acceptability Study. JMIR Mhealth Uhealth, 2020. 8(11): p. e22136.
97. Papageorgiou, A., et al., Security and Privacy Analysis of Mobile Health Applications: The Alarming State of Practice. IEEE Access, 2018. 6: p. 9390-9403.
98. Tangari, G., et al., Analyzing security issues of android mobile health and medical applications. Journal of the American Medical Informatics Association, 2021. 28(10): p. 2074-2084.
99. Lewis, T.L. and J.C. Wyatt, mHealth and Mobile Medical Apps: A Framework to Assess Risk and Promote Safer Use. J Med Internet Res, 2014. 16(9): p. e210.
100. Knitza, J., et al., German Mobile Apps in Rheumatology: Review and Analysis Using the Mobile Application Rating Scale (MARS). JMIR Mhealth Uhealth, 2019. 7(8): p. e14991.
65
101. Kommission, E. Green Paper on Mobile Health. [cited 2022 30.12.]; Available from: https://op.europa.eu/en/publication-detail/-/publication/0de99b25-c0af-11e3-86f9-01aa75ed71a1.
102. Knitza, J., et al., Positionspapier der Kommission Digitale Rheumatologie der Deutschen Gesellschaft für Rheumatologie e. V.: Aufgaben, Ziele und Perspektiven für eine moderne Rheumatologie. Zeitschrift für Rheumatologie, 2020. 79(6): p. 562-569.
103. Knitza, J., et al., [Use of medical apps and online platforms among German rheumatologists : Results of the 2016 and 2018 DGRh conference surveys and research conducted by rheumadocs]. Z Rheumatol, 2019. 78(9): p. 839-846.
104. Kataria, S. and V. Ravindran, Digital health: a new dimension in rheumatology patient care. Rheumatology International, 2018. 38(11): p. 1949-1957.
105. Stoyanov, S.R., et al., Mobile app rating scale: a new tool for assessing the quality of health mobile apps. JMIR Mhealth Uhealth, 2015. 3(1): p. e27.
106. Najm, A., et al., Mobile Health Apps for Self-Management of Rheumatic and Musculoskeletal Diseases: Systematic Literature Review. JMIR mHealth and uHealth, 2019. 7(11): p. e14730-e14730.
107. WHO. Future of digital health systems: report on the WHO symposium on the future of digital health systems in the European Region. 6–8 February 2019 24.03.2022]; Available from: https://www.euro.who.int/en/health-topics/Health-systems/digital-health/publications/2019/future-of-digital-health-systems-report-on-the-who-symposium-on-the-future-of-digital-health-systems-in-the-european-region-copenhagen,-denmark,-68-february-2019.
108. Palladino, R., et al., Associations between multimorbidity, healthcare utilisation and health status: evidence from 16 European countries. Age Ageing, 2016. 45(3): p. 431-5.
109. Kingston, A., et al., Projections of multi-morbidity in the older population in England to 2035: estimates from the Population Ageing and Care Simulation (PACSim) model. Age Ageing, 2018. 47(3): p. 374-380.
110. Gandrup, J., et al., Remote symptom monitoring integrated into electronic health records: A systematic review. J Am Med Inform Assoc, 2020. 27(11): p. 1752-1763.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:04.09.2023
Dateien geändert am:04.09.2023
Promotionsantrag am:10.03.2023
Datum der Promotion:24.08.2023
english
Benutzer
Status: Gast
Aktionen