Geometry of the Vocal Tract and Properties of Phonation near Threshold: Calculations and Measurements

Language
en
Document Type
Article
Issue Date
2019-09-03
First published
2019-07-08
Issue Year
2019
Authors
Fulcher, Lewis
Lodermeyer, Alexander
Kähler, George
Becker, Stefan
Kniesburges, Stefan
Editor
Publisher
MDPI
Abstract

In voice research, analytically-based models are efficient tools to investigate the basic physical mechanisms of phonation. Calculations based on lumped element models describe the effects of the air in the vocal tract upon threshold pressure (Pth) by its inertance. The latter depends on the geometrical boundary conditions prescribed by the vocal tract length (directly) and its cross-sectional area (inversely). Using Titze’s surface wave model (SWM) to account for the properties of the vocal folds, the influence of the vocal tract inertia is examined by two sets of calculations in combination with experiments that apply silicone-based vocal folds. In the first set, a vocal tract is constructed whose cross-sectional area is adjustable from 2.7 cm2 to 11.7 cm2. In the second set, the length of the vocal tract is varied from 4.0 cm to 59.0 cm. For both sets, the pressure and frequency data are collected and compared with calculations based on the SWM. In most cases, the measurements support the calculations; hence, the model is suited to describe and predict basic mechanisms of phonation and the inertial effects caused by a vocal tract.

Journal Title
Applied Sciences
Volume
9
Issue
13
Citation
Applied Sciences 9.13 (2019). <https://www.mdpi.com/2076-3417/9/13/2755>
Zugehörige ORCIDs