Quantifying the Effects of Permafrost Degradation in Arctic Coastal Environments via Satellite Earth Observation

Quantifizierung der Effekte von Permafrost Degradation in Arktischen Küstenregionen mittels Satelliten-gestützter Erdbeobachtung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-345634
  • Permafrost degradation is observed all over the world as a consequence of climate change and the associated Arctic amplification, which has severe implications for the environment. Landslides, increased rates of surface deformation, rising likelihood of infrastructure damage, amplified coastal erosion rates, and the potential turnover of permafrost from a carbon sink to a carbon source are thereby exemplary implications linked to the thawing of frozen ground material. In this context, satellite earth observation is a potent tool for thePermafrost degradation is observed all over the world as a consequence of climate change and the associated Arctic amplification, which has severe implications for the environment. Landslides, increased rates of surface deformation, rising likelihood of infrastructure damage, amplified coastal erosion rates, and the potential turnover of permafrost from a carbon sink to a carbon source are thereby exemplary implications linked to the thawing of frozen ground material. In this context, satellite earth observation is a potent tool for the identification and continuous monitoring of relevant processes and features on a cheap, long-term, spatially explicit, and operational basis as well as up to a circumpolar scale. A total of 325 articles published in 30 different international journals during the past two decades were investigated on the basis of studied environmental foci, remote sensing platforms, sensor combinations, applied spatio-temporal resolutions, and study locations in an extensive review on past achievements, current trends, as well as future potentials and challenges of satellite earth observation for permafrost related analyses. The development of analysed environmental subjects, utilized sensors and platforms, and the number of annually published articles over time are addressed in detail. Studies linked to atmospheric features and processes, such as the release of greenhouse gas emissions, appear to be strongly under-represented. Investigations on the spatial distribution of study locations revealed distinct study clusters across the Arctic. At the same time, large sections of the continuous permafrost domain are only poorly covered and remain to be investigated in detail. A general trend towards increasing attention in satellite earth observation of permafrost and related processes and features was observed. The overall amount of published articles hereby more than doubled since the year 2015. New sources of satellite data, such as the Sentinel satellites and the Methane Remote Sensing LiDAR Mission (Merlin), as well as novel methodological approaches, such as data fusion and deep learning, will thereby likely improve our understanding of the thermal state and distribution of permafrost, and the effects of its degradation. Furthermore, cloud-based big data processing platforms (e.g. Google Earth Engine (GEE)) will further enable sophisticated and long-term analyses on increasingly larger scales and at high spatial resolutions. In this thesis, a specific focus was put on Arctic permafrost coasts, which feature increasing vulnerability to environmental parameters, such as the thawing of frozen ground, and are therefore associated with amplified erosion rates. In particular, a novel monitoring framework for quantifying Arctic coastal erosion rates within the permafrost domain at high spatial resolution and on a circum-Arctic scale is presented within this thesis. Challenging illumination conditions and frequent cloud cover restrict the applicability of optical satellite imagery in Arctic regions. In order to overcome these limitations, Synthetic Aperture RADAR (SAR) data derived from Sentinel-1 (S1), which is largely independent from sun illumination and weather conditions, was utilized. Annual SAR composites covering the months June–September were combined with a Deep Learning (DL) framework and a Change Vector Analysis (CVA) approach to generate both a high-quality and circum-Arctic coastline product as well as a coastal change product that highlights areas of erosion and build-up. Annual composites in the form of standard deviation (sd) and median backscatter were computed and used as inputs for both the DL framework and the CVA coastal change quantification. The final DL-based coastline product covered a total of 161,600 km of Arctic coastline and featured a median accuracy of ±6.3 m to the manually digitized reference data. Annual coastal change quantification between 2017–2021 indicated erosion rates of up to 67 m per year for some areas based on 400 m coastal segments. In total, 12.24% of the investigated coastline featured an average erosion rate of 3.8 m per year, which corresponds to 17.83 km2 of annually eroded land area. Multiple quality layers associated to both products, the generated DL-coastline and the coastal change rates, are provided on a pixel basis to further assess the accuracy and applicability of the proposed data, methods, and products. Lastly, the extracted circum-Arctic erosion rates were utilized as a basis in an experimental framework for estimating the amount of permafrost and carbon loss as a result of eroding permafrost coastlines. Information on permafrost fraction, Active Layer Thickness (ALT), soil carbon content, and surface elevation were thereby combined with the aforementioned erosion rates. While the proposed experimental framework provides a valuable outline for quantifying the volume loss of frozen ground and carbon release, extensive validation of the utilized environmental products and resulting volume loss numbers based on 200 m segments are necessary. Furthermore, data of higher spatial resolution and information of carbon content for deeper soil depths are required for more accurate estimates.show moreshow less
  • Als Folge des Klimawandels und der damit verbundenen „Arctic Amplification“ wird weltweit eine Degradation des Dauerfrostbodens (Permafrost) beobachtet, welche schwerwiegende Auswirkungen auf die Umwelt hat. Erdrutsche, erhöhte Oberflächen- verformungsraten, eine zunehmende Wahrscheinlichkeit von Infrastrukturschäden, verstärkte Küstenerosionsraten und die potenzielle Umwandlung von Permafrost von einer Kohlenstoffsenke in eine Kohlenstoffquelle sind dabei beispielhafte Auswirkun- gen im Zusammenhang mit dem Auftauen von gefrorenemAls Folge des Klimawandels und der damit verbundenen „Arctic Amplification“ wird weltweit eine Degradation des Dauerfrostbodens (Permafrost) beobachtet, welche schwerwiegende Auswirkungen auf die Umwelt hat. Erdrutsche, erhöhte Oberflächen- verformungsraten, eine zunehmende Wahrscheinlichkeit von Infrastrukturschäden, verstärkte Küstenerosionsraten und die potenzielle Umwandlung von Permafrost von einer Kohlenstoffsenke in eine Kohlenstoffquelle sind dabei beispielhafte Auswirkun- gen im Zusammenhang mit dem Auftauen von gefrorenem Bodenmaterial. In diesem Kontext ist die Satelliten-gestützte Erdbeobachtung ein wirkmächtiges Werkzeug zur Identifizierung und kontinuierlichen Überwachung relevanter Prozesse und Merkmale auf einer kostengünstigen, langfristigen, räumlich expliziten und operativen Basis und auf einem zirkumpolaren Maßstab. Insgesamt 325 Artikel, die in den letzten zwei Jahrzehnten in 30 verschiedenen internationalen Zeitschriften veröffentlicht wurden, wurden auf Basis der adressierten Umweltschwerpunkte, Fernerkundungsplattformen, Sensorkombinationen, angewand- ten raum-zeitlichen Auflösungen und den Studienorten in einem umfassenden Überblick über vergangene Errungenschaften und aktuelle Trends untersucht. Zusätzlich wur- den zukünftige Potenziale und Herausforderungen der Satelliten-Erdbeobachtung für Permafrost-bezogene Analysen diskutiert. Auf die zeitliche Entwicklung der un- tersuchten Umweltthemen, eingesetzten Sensoren und Satelliten-Plattformen sowie die Zahl der jährlich erscheinenden Artikel wurde detailliert eingegangen. Studien zu atmosphärischen Eigenschaften und Prozessen, wie etwa der Freisetzung von Treibhaus- gasemissionen, waren stark unterrepräsentiert. Deutliche geografische Schlüssel-Gebiete, auf welche sich der Großteil der Studien konzentrierte, konnten in Untersuchungen zur räumlichen Verteilung der Studienorte identifiziert werden. Gleichzeitig sind große Teile des kontinuierlichen Permafrost-Gebiets nur spärlich abgedeckt und müssen noch im Detail untersucht werden. Es wurde ein allgemeiner Trend zu einer zunehmenden Aufmerksamkeit bezüglich der Satelliten-gestützten Erdbeobachtung von Permafrost und verwandten Prozessen und Merkmalen beobachtet. Die Gesamtzahl der veröf- fentlichten Artikel hat sich dabei seit dem Jahr 2015 mehr als verdoppelt. Neue Quellen für Satellitendaten, wie beispielweise die Sentinel-Satelliten und die Methane Remote Sensing LiDAR Mission (Merlin), sowie neuartige methodische Ansätze, wie Datenfusion und Deep Learning, werden dabei voraussichtlich unser Verständnis bzgl. des thermischen Zustands und der Verteilung von Permafrost-Vorkommen sowie die Auswirkungen seines Auftauens verbessern. Darüber hinaus werden Cloud-basierte Big-Data-Verarbeitungsplattformen (z.B. Google Earth Engine (GEE)) anspruchsvolle und langfristige Analysen in immer größeren Maßstäben und mit hoher räumlicher Auflösung erleichtern. In dieser Arbeit wurde ein besonderer Fokus auf arktische Permafrost-Küsten gelegt, die eine zunehmende Vulnerabilität gegenüber Umweltparametern wie dem Auftauen von gefrorenem Boden aufweisen und daher von verstärkten Erosionsraten betroffen sind. Ein neuartiger Ansatz zur Quantifizierung der arktischen Küstene- rosion innerhalb des Permafrost-Gebiets mit hoher räumlicher Auflösung und auf zirkum-arktischem Maßstab wird in dieser Dissertation präsentiert. Schwierige Be- leuchtungsbedingungen und häufige Bewölkung schränken die Anwendbarkeit optischer Satellitenbilder in arktischen Regionen ein. Um diese Einschränkungen zu überwinden, wurden Synthetic Aperture RADAR (SAR) Daten von Sentinel-1 (S1) verwendet, die weitgehend unabhängig von Sonneneinstrahlung und Wetterbedingungen sind. Jährli- che SAR-Komposite, welche die Monate Juni bis September abdecken, wurden mit einem Deep Learning (DL)-Ansatz und einer Change Vector Analysis (CVA)-Methode kombiniert, um sowohl ein qualitativ hochwertiges und zirkum-arktisches Küstenli- nienprodukt als auch ein Produkt für die Änderungsraten (Erosion und küstennahe Aggregation von Sedimenten) der Küste zu generieren. Jährliche Satelliten-Komposite in Form von der Standardabweichung (sd) und des Medians der SAR Rückstreuung wurden hierbei berechnet und als Eingabedaten sowohl für den DL-Ansatz als auch für die Quantifizierung der CVA-basierten Küstenänderung verwendet. Das endgül- tige DL-basierte Küstenlinienprodukt deckt insgesamt 161.600 km der arktischen Küstenlinie ab und wies eine Median-Abweichung von ±6,3 m gegenüber den ma- nuell digitalisierten Referenzdaten auf. Im Zuge der Quantifizierung von jährlichen Küstenveränderungen zwischen 2017 und 2021 konnten Erosionsraten von bis zu 67 m pro Jahr und basierend auf 400 m Küstenabschnitten identifiziert werden. Insgesamt wiesen 12,24% der untersuchten Küstenlinie eine durchschnittliche Erosionsrate von 3,8 m pro Jahr auf, was einer jährlichen erodierten Landfläche von 17,83 km2 entspricht. Mehrere Qualitäts-Datensätze, die beiden Produkten zugeordnet sind, wurden auf Pixelbasis bereitgestellt, um die Genauigkeit und Anwendbarkeit der präsentierten Daten, Methoden und Produkte weiter einordnen zu können. Darüber hinaus wurden die extrahierten zirkum-arktischen Erosionsraten als Grund- lage in einem experimentellen Ansatz verwendet, um die Menge an Permafrost-Verlust und Kohlenstofffreistzung als Konsequenz der erodierten Permafrost-Küsten abzu- schätzen. Dabei wurden Informationen zu Permafrost-Anteil, Active Layer Thickness (ALT), Höhenmodellen und der Menge an im Boden gespeichertem Kohlenstoff mit den oben genannten Erosionsraten kombiniert. Während der präsentierte experimentelle Ansatz einen wertvollen Ausgangspunkt für die Quantifizierung des Volumenverlusts von gefrorenem Boden und der Kohlenstofffreisetzung darstellt, ist eine umfassende Validierung der verwendeten Umweltprodukte und der resultierenden Volumenzah- len erforderlich. Zusätzlich werden für genauere Abschätzungen Daten mit höherer räumlicher Auflösung und Informationen zum Kohlenstoffgehalt für tiefere Bodentiefen benötigt.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Marius Balthasar PhilippORCiDGND
URN:urn:nbn:de:bvb:20-opus-345634
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.)
Faculties:Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) / Institut für Geographie und Geologie
Referee:Prof. Dr. Claudia Künzer, Prof. Dr. Christof Kneisel, Prof. Dr. Tobias Ullmann
Date of final exam:2023/11/07
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-34563
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
GND Keyword:Dauerfrostboden; Synthetische Apertur; Deep learning; Erosion; Satellit
Tag:Arctic; Change Vector Analysis; Circumpolar; Permafrost; Satellite Earth Observation; Synthetic Aperture RADAR
CCS-Classification:I. Computing Methodologies / I.2 ARTIFICIAL INTELLIGENCE
Release Date:2023/12/18
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International