Simulation of self-assembled nanopatterns in binary alloys on the fcc(111) surface

Simulation von selbstgebildeten Nanostrukturen in binären Legierungen auf der fcc(111) Oberfläche

Please always quote using this URN: urn:nbn:de:bvb:20-opus-27914
  • In this PhD thesis, we study the heteroepitaxial crystal growth by means of Monte Carlo simulations. Of particular interest in this work is the influence of the lattice mismatch of the adsorbates relative to the substrate on surface structures. In the framework of an off-lattice model, we consider one monolayer of adsorbate and investigate the emerging nanopatterns in equilibrium and their formation during growth. In chapter 1, a brief introduction is given, which describes the role of computer simulations in the field of the physics ofIn this PhD thesis, we study the heteroepitaxial crystal growth by means of Monte Carlo simulations. Of particular interest in this work is the influence of the lattice mismatch of the adsorbates relative to the substrate on surface structures. In the framework of an off-lattice model, we consider one monolayer of adsorbate and investigate the emerging nanopatterns in equilibrium and their formation during growth. In chapter 1, a brief introduction is given, which describes the role of computer simulations in the field of the physics of condensed matter. Chapter 2 is devoted to some technical basics of experimental methods of molecular beam epitaxy and the theoretical description. Before a model for the simulation can be designed, it is necessary to make some considerations of the single processes which occur during epitaxial growth. For that purpose we look at an experimental setup and extract the main microscopic processes. Afterwards a brief overview of different theoretical concepts describing that physical procedures is given. In chapter 3, the model used in the simulations is presented. The aim is to investigate the growth of an fcc crystal in the [111] direction. In order to keep the simulation times within a feasible limit a simple pair potential, the Lennard-Jones potential, with continuous particle positions is used, which are necessary to describe effects resulting from the atomic mismatch in the crystal. Furthermore the detailed algorithm is introduced which is based on the idea to calculate the barrier of each diffusion event and to use the barriers in a rejection-free method. Chapter 4 is attended to the simulation of equilibrium. The influence of different parameters on the emerging structures in the first monolayer upon the surface, which is completely covered with two adsorbate materials, is studied. Especially the competition between binding energy and strain leads to very interesting pattern formations like islands or stripes. In chapter 5 the results of growth simulations are presented. At first, we introduce a model in order to realize off-lattice Kinetic Monte Carlo simulations. Since the costs in simulation time are enormous, some simplifications in the calculation of diffusion barriers are necessary and therefore the previous model is supplemented with some elements from the so-called ball and spring model. The next point is devoted to the calculation of energy barriers followed by the presentation of the growth simulations. Binary systems with only one sort of adsorbate are investigated as well as ternary systems with two different adsorbates. Finally, a comparison to the equilibrium simulations is drawn. Chapter 6 contains some concluding remarks and gives an outlook to possible further investigations.show moreshow less
  • Diese Doktorarbeit beschäftigt sich mit der Untersuchung von heteroepitaktischem Kristallwachstum mit Hilfe von Monte Carlo Simulationen. Von besonderem Interesse ist hierbei der Einfluss des Gitterunterschieds zwischen den Adsorbatmaterialien und dem Substrat auf die Oberflächenstrukturen. Unter Verwendung eines gitterfreien Modells betrachten wir die erste Monolage des Adsorbats und untersuchen die entstehenden Nanostrukturen sowie deren Entwicklung während des Wachstums. Kapitel 1 gibt dazu eine kurze Einführung, welche die Rolle vonDiese Doktorarbeit beschäftigt sich mit der Untersuchung von heteroepitaktischem Kristallwachstum mit Hilfe von Monte Carlo Simulationen. Von besonderem Interesse ist hierbei der Einfluss des Gitterunterschieds zwischen den Adsorbatmaterialien und dem Substrat auf die Oberflächenstrukturen. Unter Verwendung eines gitterfreien Modells betrachten wir die erste Monolage des Adsorbats und untersuchen die entstehenden Nanostrukturen sowie deren Entwicklung während des Wachstums. Kapitel 1 gibt dazu eine kurze Einführung, welche die Rolle von Computersimulationen im Gebiet der modernen Festkörperphysik beschreibt. Kapitel 2 widmet sich einigen technischen Grundlagen der Molekularstrahlepitaxie und deren theoretischen Behandlung. Bevor ein Modell für die Simulation erstellt werden kann, ist es notwendig einige Überlegungen über die einzelnen Prozesse anzustellen, welche beim epitaktischen Wachstum in Erscheinung treten. Zu diesem Zweck betrachten wir zunächst den experimentellen Aufbau und entnehmen die wichtigsten mikroskopischen Prozesse. Danach wird ein kurzer Überblick über die verschiedenen theoretischen Konzepte gegeben, die diese physikalischen Vorgänge beschreiben. In Kapitel 3 wird anschließend das in den Simulationen verwendete Modell vorgestellt. Das Ziel dieser Arbeit ist die Untersuchung des Wachstums eines fcc Kristalls in die [111] Richtung. Um die Simulationszeiten in realisierbaren Grenzen zu halten, wird ein einfaches Paar-Potential, das Lennard-Jones Potential, mit kontinuierlichen Koordinaten verwendet, welche notwendig sind, um Effekte zu beschreiben, die ihren Ursprung in der atomaren Fehlanpassung im Kristall besitzen. Außerdem wird der detaillierte Algorithmus erläutert, welcher darauf basiert zunächst die Barriere eines jeden Diffusionsereignisses zu berechnen, um diese Barrieren dann in einem verwerfungsfreien Algorithmus zu verwenden. Kapitel 4 beschäftigt sich mit der Simulation von Gleichgewichtskonfigurationen. Dabei wird der Einfluss verschiedener Parameter auf die entstehenden Strukturen in der ersten Monolage auf dem Substrat untersucht, welches vollständig mit zwei Adsorbatmaterialien bedeckt ist. Besonders die Konkurrenz zwischen Bindungsenergie und Verspannung führt zur Bildung äußerst interessanter Strukturen wie Inseln oder Streifen. Im Anschluss werden in Kapitel 5 die Ergebnisse von Wachstumssimulationen präsentiert. Zu Beginn stellen wir das Modell vor, das den gitterfreien Monte Carlo Simulationen zu Grunde liegt. Da sich der numerische Aufwand in enormen Simulationszeiten niederschlägt, werden einige Vereinfachungen bei der Berechnung der Diffusionsbarrieren notwendig und aus diesem Grund werden dem bis dahin verwendetem Modell einige Elemente des sogenannten Ball and Spring Modells hinzugefügt. Der nächste Abschnitt widmet sich dann den Berechnungen der Energiebarrieren, bevor die Ergebnisse der Wachstumssimulationen vorgestell werden. Dabei werden sowohl binäre Systeme mit nur einer Adsorbatsorte als auch ternäre Systeme mit zwei Adsorbatkomponenten untersucht. Abschließend wird ein Vergleich zu den Ergebnissen der Gleichgewichtssimulationen aus dem Kapitel vorher gezogen. Kapitel 6 beinhaltet schließlich einige zusammenfassende Bemerkungen und bietet einen Ausblick auf mögliche weitere Untersuchungen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sebastian Weber
URN:urn:nbn:de:bvb:20-opus-27914
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Date of final exam:2008/06/20
Language:English
Year of Completion:2008
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Kristallwachstum; Epitaxie; Monte-Carlo-Simulation; Kubisch flächenzentriertes Gitter
Tag:Heteroepitaxie; Monte Carlo; Simulation; Verspannung
Epitaxy; Monte Carlo; Simulation; Strain
PACS-Classification:00.00.00 GENERAL / 07.00.00 Instruments, apparatus, and components common to several branches of physics and astronomy (see also each subdiscipline for specialized instrumentation and techniques) / 07.05.-t Computers in experimental physics; Computers in education, see 01.50.H- and 01.50.Lc; Computational techniques, see 02.70.-c; Quantum computation architectures and implementations, see 03.67.Lx; Optical computers, see 42.79.Ta / 07.05.Tp Computer modeling and simulation
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 81.00.00 Materials science / 81.15.-z Methods of deposition of films and coatings; film growth and epitaxy (for structure of thin films, see 68.55.-a; see also 85.40.Sz Deposition technology in microelectronics) / 81.15.Aa Theory and models of film growth
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 81.00.00 Materials science / 81.16.-c Methods of nanofabrication and processing (for femtosecond probing of semiconductor nanostructures, see 82.53.Mj in physical chemistry and chemical physics) / 81.16.Rf Nanoscale pattern formation
Release Date:2008/06/27
Advisor:PD Dr. Michael Biehl