Computation of multi-branch-point covers and applications in Galois theory

Berechnung von Mehrpunktüberlagerungen und Anwendungen in der Galoistheorie

Please always quote using this URN: urn:nbn:de:bvb:20-opus-277025
  • We present a technique for computing multi-branch-point covers with prescribed ramification and demonstrate the applicability of our method in relatively large degrees by computing several families of polynomials with symplectic and linear Galois groups. As a first application, we present polynomials over \(\mathbb{Q}(\alpha,t)\) for the primitive rank-3 groups \(PSp_4(3)\) and \(PSp_4(3).C_2\) of degree 27 and for the 2-transitive group \(PSp_6(2)\) in its actions on 28 and 36 points, respectively. Moreover, the degree-28 polynomial forWe present a technique for computing multi-branch-point covers with prescribed ramification and demonstrate the applicability of our method in relatively large degrees by computing several families of polynomials with symplectic and linear Galois groups. As a first application, we present polynomials over \(\mathbb{Q}(\alpha,t)\) for the primitive rank-3 groups \(PSp_4(3)\) and \(PSp_4(3).C_2\) of degree 27 and for the 2-transitive group \(PSp_6(2)\) in its actions on 28 and 36 points, respectively. Moreover, the degree-28 polynomial for \(PSp_6(2)\) admits infinitely many totally real specializations. Next, we present the first (to the best of our knowledge) explicit polynomials for the 2-transitive linear groups \(PSL_4(3)\) and \(PGL_4(3)\) of degree 40, and the imprimitive group \(Aut(PGL_4(3))\) of degree 80. Additionally, we negatively answer a question by König whether there exists a degree-63 rational function with rational coefficients and monodromy group \(PSL_6(2)\) ramified over at least four points. This is achieved due to the explicit computation of the corresponding hyperelliptic genus-3 Hurwitz curve parameterizing this family, followed by a search for rational points on it. As a byproduct of our calculations we obtain the first explicit \(Aut(PSL_6(2))\)-realizations over \(\mathbb{Q}(t)\). At last, we present a technique by Elkies for bounding the transitivity degree of Galois groups. This provides an alternative way to verify the Galois groups from the previous chapters and also yields a proof that the monodromy group of a degree-276 cover computed by Monien is isomorphic to the sporadic 2-transitive Conway group \(Co_3\).show moreshow less
  • Wir stellen eine Technik zur Berechnung von Mehrpunktüberlagerungen mit vorgeschriebener Verzweigung vor und demonstrieren die Anwendbarkeit unserer Methode in relativ großen Graden durch die Berechnung mehrerer Familien von Polynomen mit symplektischen und linearen Galoisgruppen. Als erste Anwendung präsentieren wir Polynome über \(\mathbb{Q}(\alpha,t)\) für die primitiven Rang-3-Gruppen \(PSp_4(3)\) und \(PSp_4(3).C_2\) vom Grad 27 und für die 2-fach transitive Gruppe \(PSp_6(2)\) in ihren Operationen auf 28 bzw. 36 Punkten. Außerdem lässtWir stellen eine Technik zur Berechnung von Mehrpunktüberlagerungen mit vorgeschriebener Verzweigung vor und demonstrieren die Anwendbarkeit unserer Methode in relativ großen Graden durch die Berechnung mehrerer Familien von Polynomen mit symplektischen und linearen Galoisgruppen. Als erste Anwendung präsentieren wir Polynome über \(\mathbb{Q}(\alpha,t)\) für die primitiven Rang-3-Gruppen \(PSp_4(3)\) und \(PSp_4(3).C_2\) vom Grad 27 und für die 2-fach transitive Gruppe \(PSp_6(2)\) in ihren Operationen auf 28 bzw. 36 Punkten. Außerdem lässt das Polynom vom Grad 28 für \(PSp_6(2)\) unendlich viele total-reelle Spezialisierungen zu. Als Nächstes präsentieren wir die (unseres Wissens nach) ersten expliziten Polynome für die 2-fach transitiven linearen Gruppen \(PSL_4(3)\) und \(PGL_4(3)\) vom Grad 40 und die imprimitive Gruppe \(Aut(PGL_4(3))\) vom Grad 80. Zusätzlich geben wir eine negative Antwort auf die Frage von König, ob es eine rationale Funktion vom Grad 63 mit rationalen Koeffizienten gibt, die über mindestens vier Punkten verzweigt ist und Monodromiegruppe \(PSL_6(2)\) besitzt. Dies wird durch die explizite Berechnung der entsprechenden hyperelliptischen Geschlecht-3 Hurwitzkurve erreicht, die diese Familie parametrisiert, gefolgt von einer Suche nach rationalen Punkten auf ihr. Als Nebenprodukt unserer Berechnungen erhalten wir die ersten expliziten \(Aut(PSL_6(2))\)-Realisierungen über \(\mathbb{Q}(t)\). Schließlich stellen wir eine Technik von Elkies zur Beschränkung des Transitivitätsgrades von Galoisgruppen vor. Diese bietet einen alternativen Weg, die Galoisgruppen aus den vorherigen Kapiteln zu verifizieren und liefert auch einen Beweis dafür, dass die Monodromiegruppe einer von Monien berechneten Grad-276 Überlagerung isomorph zur sporadischen 2-fach transitiven Conway-Gruppe \(Co_3\) ist.show moreshow less
Metadaten
Author: Dominik BarthORCiDGND
URN:urn:nbn:de:bvb:20-opus-277025
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Mathematik
Referee:Prof. Dr. Peter Müller, Prof. Dr. Michael Dettweiler
Date of final exam:2022/06/17
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-27702
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 512 Algebra
GND Keyword:Galois-Theorie; Hurwitz-Raum; Monodromie; Überlagerung <Mathematik>
Tag:Belyi map
MSC-Classification:12-XX FIELD THEORY AND POLYNOMIALS / 12Fxx Field extensions / 12F12 Inverse Galois theory
Release Date:2022/06/27
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International