Numerical Studies of Quantum Spin Systems

Numerische Untersuchungen von Quanten-Spin-Systemen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-26439
  • In a first part the bilayer Heisenberg Model and the 2D Kondo necklace model are studied. Both models exhibit a quantum phase transition between an ordered and disordered phase. The question is addressed to the coupling of a single doped hole to the critical fluctuations. A self-consistent Born approximation predicts that the doped hole couples to the magnons such that the quasiparticle residue vanishes at the quantum critical point. In this work the delicate question about the fate of the quasiparticle residue across the quantum phaseIn a first part the bilayer Heisenberg Model and the 2D Kondo necklace model are studied. Both models exhibit a quantum phase transition between an ordered and disordered phase. The question is addressed to the coupling of a single doped hole to the critical fluctuations. A self-consistent Born approximation predicts that the doped hole couples to the magnons such that the quasiparticle residue vanishes at the quantum critical point. In this work the delicate question about the fate of the quasiparticle residue across the quantum phase transition is also tackled by means of large scale quantum Monte Carlo simulations. Furthermore the dynamics of a single hole doped in the magnetic background is investigated. In the second part an analysis of the spiral staircase Heisenberg ladder is presented. The ladder consists of two ferromagnetic coupled spin-1/2 chains, where the coupling within the second chain can be tuned by twisting the ladder. Within this model the crossover between an ungapped spin-1/2 system and a gapped spin-1 system can be studied. In this work the emphasis is on the opening of the spin gap with respect to the ferromagnetic rung coupling. It is shown that there are essential differences in the scaling behavior of the spin gap depending on the twist of the model. Moreover, by means of the string order parameter it is shown, that the system remains in the Haldane phase within the whole parameter range although the spin gap scales differently. The tools which are used for the analyses are mainly large scale quantum Monte Carlo methods, but also exact diagonalization techniques as well as mean field approaches.show moreshow less
  • Der erste Teil der Arbeit widmet sich der Untersuchung des Bilayer-Heisenberg-Modells und des zweidimensionalen Kondo-Necklace-Modells. Beide Modelle weisen einen Quantenphasenübergang zwischen einer geordneten und einer ungeordneten Phase auf. In dieser Arbeit richtet sich das Interesse insbesondere auf die Kopplung der kritischen Fluktuationen an ein in das System eingebundenes Loch. Mittels eines selbstkonsistenten Born'schen Näherungsverfahrens wird gezeigt, dass das Loch mit den Magnonen derart wechselwirkt, dass dessenDer erste Teil der Arbeit widmet sich der Untersuchung des Bilayer-Heisenberg-Modells und des zweidimensionalen Kondo-Necklace-Modells. Beide Modelle weisen einen Quantenphasenübergang zwischen einer geordneten und einer ungeordneten Phase auf. In dieser Arbeit richtet sich das Interesse insbesondere auf die Kopplung der kritischen Fluktuationen an ein in das System eingebundenes Loch. Mittels eines selbstkonsistenten Born'schen Näherungsverfahrens wird gezeigt, dass das Loch mit den Magnonen derart wechselwirkt, dass dessen Quasiteilchengewicht am quantenkritischen Punkt verschwindet. Um diesen Aspekt weiter zu untersuchen, wird das Verhalten des Quasiteilchengewichts im Bereich der kritischen Kopplung auch mit Quanten-Monte-Carlo-Methoden analysiert. Desweiteren werden die dynamischen Eigenschaften des Loches im magnetischen Hintergrund untersucht. Im zweiten Teil dieser Arbeit gilt das Interesse der Untersuchung des Spiral-Staircase-Heisenberg-Modells. Dieses besteht aus zwei, zu einer Spinleiter ferromagnetisch gekopplten Spin-1/2-Ketten, wobei die antiferromagnetische Kopplung innerhalb der zweiten Kette durch Windung der Leiter variiert werden kann. Dieses Model eignet sich, den Übergang zwischen einer Spin-1/2-Kette ohne Spinlücke und einer Spin-1-Kette mit Spinlücke zu studieren. Besondere Beachtung ist dem Öffnen der Spinlücke in Abhängigkeit der ferromagnetischen Kopplung zwischen den Leiterbeinen geboten. Es stellt sich heraus, dass das System, abhängig von der Leiterwindung, wesentliche Unterschiede im Skalierungsverhalten der Spinlücke aufweist. Desweiteren wird mittels der String-Order-Parameter gezeigt, dass das Spiral-Staircase-Heisenberg-Modell trotz des unterschiedlichen Skalierungsverhaltens der Spinlücke und unabhängig von der Wahl der Parameter sich stets in der Haldane-Phase befindet. Die Analyse der Modelle bedient sich hauptsächlich Quanten-Monte-Carlo-Methoden, aber auch exakter Diagonalisierungstechniken, sowie auf Molekularfeldnäherungen gestützten Rechnungen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Christian Brünger
URN:urn:nbn:de:bvb:20-opus-26439
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Date of final exam:2008/02/15
Language:English
Year of Completion:2007
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Spinsystem
Tag:QMC; Quanten-Monte Carlo; Spiral-Staircase-Heisenberg-Modell
Quantum Monte Carlo; SSHL; Spiral Staircase Heisenberg Model
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb) / 71.10.-w Theories and models of many-electron systems
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb) / 71.10.-w Theories and models of many-electron systems / 71.10.Fd Lattice fermion models (Hubbard model, etc.)
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb) / 71.27.+a Strongly correlated electron systems; heavy fermions
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational / 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals / 73.22.Gk Broken symmetry phases
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.10.-b General theory and models of magnetic ordering (see also 05.50.+q Lattice theory and statistics) / 75.10.Pq Spin chain models
Release Date:2008/03/04
Advisor:Prof. Dr. Fakher Assaad