Dose rate correction for a silicon diode detector array

Please always quote using this URN: urn:nbn:de:bvb:20-opus-260446
  • Purpose A signal dependence on dose rate was reported for the ArcCHECK array due to recombination processes within the diodes. The purpose of our work was to quantify the necessary correction and apply them to quality assurance measurements. Methods Static 10 × 10 cm\(^2\) 6-MV fields delivered by a linear accelerator were applied to the detector array while decreasing the average dose rate, that is, the pulse frequency, from 500 to 30 MU/min. An ion chamber was placed inside the ArcCHECK cavity as a reference. Furthermore, thePurpose A signal dependence on dose rate was reported for the ArcCHECK array due to recombination processes within the diodes. The purpose of our work was to quantify the necessary correction and apply them to quality assurance measurements. Methods Static 10 × 10 cm\(^2\) 6-MV fields delivered by a linear accelerator were applied to the detector array while decreasing the average dose rate, that is, the pulse frequency, from 500 to 30 MU/min. An ion chamber was placed inside the ArcCHECK cavity as a reference. Furthermore, the instantaneous dose rate dependence (DRD) was studied. The position of the detector was adjusted to change the dose-per-pulse, varying the distance between the focus and the diode closest to the focus between 69.6 and 359.6 cm. Reference measurements were performed with an ion chamber placed inside a PMMA slab phantom at the same source-to-detector distances (SDDs). Exponential saturation functions were fitted to the data, with different parameters to account for two generations of ArcCHECK detectors (types 2 and 3) and both DRDs. Corrections were applied to 12 volumetric modulated arc therapy plans. Results The sensitivity decreased by up to 2.8% with a decrease in average dose rate and by 9% with a decrease in instantaneous dose rate. Correcting the average DRD, the mean gamma pass rates (2%/2-mm criterion) of the treatment plans were improved by 5 percentage points (PP) for diode type 3 and 0.4 PP for type 2. Correcting the instantaneous DRD, the improvement was 8.4 PP for type 3 and 0.9 PP for type 2. Conclusions The instantaneous DRD was identified as the prevailing effect on the diode sensitivity. We developed and validated a method to correct this behavior. The number of falsely not passed treatment plans could be considerably reduced.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Andreas Jäger, Sonja Wegener, Otto A. Sauer
URN:urn:nbn:de:bvb:20-opus-260446
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Medizinische Strahlenkunde und Zellforschung
Language:English
Parent Title (English):Journal of Applied Clinical Medical Physics
Year of Completion:2021
Volume:22
Issue:10
Pagenumber:144-151
Source:Journal of Applied Clinical Medical Physics (2021) 22:10, 144-151. https://doi.org/10.1002/acm2.13409
DOI:https://doi.org/10.1002/acm2.13409
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:ArcCHECK; correction; diode; dose rate; dosimetry, QA
Release Date:2022/03/31
Open-Access-Publikationsfonds / Förderzeitraum 2021
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International