Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-26210
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
preprint_60_02.pdf | 207,84 kB | Adobe PDF | Öffnen/Anzeigen |
Titel: | Microstructures corresponding to curved austenite-martensite interfaces |
VerfasserIn: | Elfanni, Abdellah Fuchs, Martin |
Sprache: | Englisch |
Erscheinungsjahr: | 2002 |
Freie Schlagwörter: | elastic energy minimizing sequences Young measures |
DDC-Sachgruppe: | 510 Mathematik |
Dokumenttyp: | Sonstiges |
Abstract: | Let \Omega\subset\mathbb{R}^{2} denote a bounded Lipschitz domain and consider some portion \Gamma_{0} of \partial\Omega representing the austenite-twinned martensite interface which is not assumed to be a straight segment. We prove \underset{u\in\mathcal{W}(\Omega)}{inf}\int_{\Omega}\varphi(\nabla u(x,y))dxdy=0 for an elastic energy density \varphi:\mathbb{R}^{2}\rightarrow[0,\infty) such that \varphi(0,\pm1)=0. Here \mathcal{W}(\Omega) consist of all functions u from the Sobolev class W^{1,\infty}(\Omega) such that \left|u_{y}\right|=1 a.e. on \Omega together with u=0 on \Gamma_{0}. Moreover some minimizing sequences vanishing on the whole boundary \partial\Omega are constructed, that is, one can even take \Gamma_{0}=\partial\Omega. We also show that the existence or nonexistence of minimizers depends on the shape of the austenite-twinned martensite interface \Gamma_{0}. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291-scidok-43857 hdl:20.500.11880/26266 http://dx.doi.org/10.22028/D291-26210 |
Schriftenreihe: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
Band: | 60 |
Datum des Eintrags: | 2-Dez-2011 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Mathematik |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.