PDF A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval.pdf
- Veröffentlichte Version
Download (446kB)
In this study, we investigate learning-to-
rank and query refinement approaches for
information retrieval in the pharmacogenomic domain. The goal is to improve the
information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We
study how to exploit the relationships be-
tween genes, variants, drugs, diseases and
outcomes as features for document ranking and query refinement.
For a supervised approach, we are faced with a
small amount of annotated data and a large
amount of unannotated data. Therefore,
we explore ways to use a neural document
auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering
and a neural auto-encoder model yield
promising results in this setting.
Dieser Eintrag ist Teil der Universitätsbibliographie.
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.