SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(3.057Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-64195-5

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Techniques for Asking Sensitive Questions in Labour Market Surveys

[phd thesis]

Kirchner, Antje

Abstract

This dissertation focuses on techniques that are expected to reduce measurement error in labor market surveys due to social desirability concerns. The first part assesses the effectiveness of de-jeopardizing techniques, such as the Randomized Response Technique (RRT) and the Item Count Technique (IC... view more

This dissertation focuses on techniques that are expected to reduce measurement error in labor market surveys due to social desirability concerns. The first part assesses the effectiveness of de-jeopardizing techniques, such as the Randomized Response Technique (RRT) and the Item Count Technique (ICT), when collecting data on undeclared work and receipt of basic income support in Germany. In addition, we developed and applied a new technique - Item Sum Technique (IST) - for eliciting responses to sensitive questions, where the responses are continuous variables. The results suggest that neither RRT nor ICT increases reports of socially undesirable behavior, whereas the IST results are more promising.... view less


Um Antwortverzerrungen bei der Erhebung von sozial unerwünschtem Verhalten in Arbeitsmarktsurveys zu reduzieren, können spezielle Befragungstechniken eingesetzt werden. Die Arbeit untersucht die Wirksamkeit dieser alternativen Fragetechniken - wie Randomized Response Technique (RRT) und Item Count T... view more

Um Antwortverzerrungen bei der Erhebung von sozial unerwünschtem Verhalten in Arbeitsmarktsurveys zu reduzieren, können spezielle Befragungstechniken eingesetzt werden. Die Arbeit untersucht die Wirksamkeit dieser alternativen Fragetechniken - wie Randomized Response Technique (RRT) und Item Count Technique (ICT) - zur Erhebung des Ausmaßes von Schwarzarbeit und Arbeitslosengeld-II-Bezug in Deutschland. Außerdem wird eine neue Methode zur Erhebung von quantitativen heiklen Merkmalen entwickelt und angewendet: die Item Sum Technique (IST). Die Befunde zeigen, dass die häufig angenommene Wirkung der RRT oder der ICT auf die Bereitschaft der Befragten, sozial unerwünschtes Verhalten zu berichten, nicht eindeutig ausfällt. Die Ergebnisse der IST fallen hingegen positiver aus.... view less

Keywords
Arbeitslosengeld II; Federal Republic of Germany; questionnaire; data quality; social desirability; unemployment; moonlighting; receipt of benefits; survey; anonymity; method; labor market research; response behavior; estimation; data capture

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods
Labor Market Research

Free Keywords
Item Count Technique; Item Sum Technique; Randomized Response Technique

Document language
English

Publication Year
2014

Publisher
W. Bertelsmann Verlag

City
Bielefeld

Page/Pages
155 p.

Series
IAB-Bibliothek (Dissertationen), 348

ISBN
978-3-7639-4084-4

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-ShareAlike 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 

This website uses cookies. The data policy provides further information, including your rights for opt-out.