SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(344.2Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-199765

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Latent class analysis with panel data: developments and applications

Analyse latenter Klassen mit Paneldaten: Entwicklungen und Anwendungen
[journal article]

Reinecke, Jost

Abstract

'In der vorliegenden Arbeit wird das statistische Modell der Analyse latenter Klassen nach der Parametrisierung von Lazardsfeld vorgestellt. Den Schwerpunkt bilden Entwicklungen und Anwendungen der Analyse latenter Klassen auf Paneldaten. Das latente Markov Modell erlaubt sowohl Restriktionen über z... view more

'In der vorliegenden Arbeit wird das statistische Modell der Analyse latenter Klassen nach der Parametrisierung von Lazardsfeld vorgestellt. Den Schwerpunkt bilden Entwicklungen und Anwendungen der Analyse latenter Klassen auf Paneldaten. Das latente Markov Modell erlaubt sowohl Restriktionen über zeitbezogene Gleichsetzungen von konditionalen Wahrscheinlichkeiten als auch Restriktionen der Übergangswahrscheinlichkeiten zwischen den latenten Variablen. Die allgemeinste Variante ist das latente mixed Markov Modell. Dieses Modell verfügt über zusätzliche Spezifikationsmöglichkeiten der unbeobachteten Heterogenität mit Markov Ketten. Empirische Beispiele, durchgeführt mit PANMARK, verdeutlichen die jeweiligen Modellierungstechniken.' (Autorenreferat)... view less


'The present paper discusses the statistical model of the latent class analysis according to the parametrization of Lazarsfeld. Developments and applications of latent class analysis with panel data are the main topic of this paper. The latent Markov model allows time-specific restrictions of the co... view more

'The present paper discusses the statistical model of the latent class analysis according to the parametrization of Lazarsfeld. Developments and applications of latent class analysis with panel data are the main topic of this paper. The latent Markov model allows time-specific restrictions of the conditional probabilities as well as restrictions of the transition probabilities between the latent variables. The most general model, the latent mixed Markov model, has additional opportunities to specify unobserved heterogeneity via different Markov chains. Empirical examples, calculated with PANMARK elucidate the relevant modeling techniques.' (author's abstract)|... view less

Keywords
probability; parameter; statistical method; panel; statistics; model theory; Lazarsfeld, P.

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Method
theory application; applied research; empirical; quantitative empirical

Document language
English

Publication Year
1999

Page/Pages
p. 137-157

Journal
ZA-Information / Zentralarchiv für Empirische Sozialforschung (1999) 44

Status
Published Version; reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 

This website uses cookies. The data policy provides further information, including your rights for opt-out.