Divergent signaling requirements of dSARM in injury-induced degeneration and developmental glial phagocytosis.

Details

Ressource 1Download: 35737721_BIB_E44AF0843CFF.pdf (4569.42 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_E44AF0843CFF
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Divergent signaling requirements of dSARM in injury-induced degeneration and developmental glial phagocytosis.
Journal
PLoS genetics
Author(s)
Herrmann K.A., Liu Y., Llobet Rosell A., McLaughlin C.N., Neukomm L.J., Coutinho-Budd J.C., Broihier H.T.
ISSN
1553-7404 (Electronic)
ISSN-L
1553-7390
Publication state
Published
Issued date
06/2022
Peer-reviewed
Oui
Volume
18
Number
6
Pages
e1010257
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, N.I.H., Extramural
Publication Status: epublish
Abstract
Elucidating signal transduction mechanisms of innate immune pathways is essential to defining how they elicit distinct cellular responses. Toll-like receptors (TLR) signal through their cytoplasmic TIR domains which bind other TIR domain-containing adaptors. dSARM/SARM1 is one such TIR domain adaptor best known for its role as the central axon degeneration trigger after injury. In degeneration, SARM1's domains have been assigned unique functions: the ARM domain is auto-inhibitory, SAM-SAM domain interactions mediate multimerization, and the TIR domain has intrinsic NAD+ hydrolase activity that precipitates axonal demise. Whether and how these distinct functions contribute to TLR signaling is unknown. Here we show divergent signaling requirements for dSARM in injury-induced axon degeneration and TLR-mediated developmental glial phagocytosis through analysis of new knock-in domain and point mutations. We demonstrate intragenic complementation between reciprocal pairs of domain mutants during development, providing evidence for separability of dSARM functional domains in TLR signaling. Surprisingly, dSARM's NAD+ hydrolase activity is strictly required for both degenerative and developmental signaling, demonstrating that TLR signal transduction requires dSARM's enzymatic activity. In contrast, while SAM domain-mediated dSARM multimerization is important for axon degeneration, it is dispensable for TLR signaling. Finally, dSARM functions in a linear genetic pathway with the MAP3K Ask1 during development but not in degenerating axons. Thus, we propose that dSARM exists in distinct signaling states in developmental and pathological contexts.
Keywords
Armadillo Domain Proteins/genetics, Armadillo Domain Proteins/metabolism, Cytoskeletal Proteins/genetics, Hydrolases/metabolism, NAD, Phagocytosis/genetics, Signal Transduction/genetics
Pubmed
Web of science
Open Access
Yes
Create date
04/07/2022 14:50
Last modification date
09/12/2023 8:02
Usage data