Olivine formation processes and fluid pathways in subducted serpentinites revealed by in-situ oxygen isotope analysis (Zermatt-Saas, Switzerland)

Details

Ressource 1Download: Ulrich_et_al_CG24.pdf (27106.04 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_807410BC363A
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Olivine formation processes and fluid pathways in subducted serpentinites revealed by in-situ oxygen isotope analysis (Zermatt-Saas, Switzerland)
Journal
Chemical Geology
Author(s)
Ulrich Michelle, Rubatto Daniela, Hermann Joerg, Markmann Thorsten, Bouvier Anne-Sophie, Deloule Etienne
Publication state
Published
Issued date
2024
Language
english
Abstract
Dehydration of serpentinites plays a crucial role in mass transfer into the Earth's interior by releasing aqueous fluids and forming new minerals. These minerals, such as metamorphic olivine, can serve as tracers of fluid-related processes. High-pressure (HP) antigorite, metamorphic olivine, and coexisting magnetite in serpentinites from a continuous, km-scale outcrop within the Zermatt-Saas HP ophiolite were analyzed in situ for trace elements and oxygen isotopes to identify differences in the initial serpentinization conditions and to investigate fluid pathways during subduction-related metamorphism. The oxygen isotopic composition, and As and Sb concentrations in antigorite reveal two distinct serpentinization conditions within the studied region: i) high As and Sb (1–25 μg/g and 0.5–5 μg/g, respectively), coupled with δ18O of +6 to +7 ‰, suggesting serpentinization at relatively low temperatures near the seafloor, and ii) low As and Sb (0.03–5 μg/g and ≤ 0.1 μg/g, respectively), coupled with mostly lower δ18O of +4 to +6 ‰, suggesting serpentinization at higher temperatures by interaction with fluids deeper below the seafloor.
Olivine produced in situ by the brucite + antigorite dehydration reaction during subduction shows isotopic equilibrium with antigorite, and coexisting magnetite with ∆18OAtg-Ol of +1.5–2.5 ‰ and ∆18OOl-Mt of ∼+3 ‰ at reaction temperature conditions of 550–600 °C. The obtained isotopic signatures of metamorphic olivine with δ18O values of +1 to +2 ‰ and + 4 to +5 ‰ correspond to two different isotopic compositions of the released fluid of +5 to +6 ‰ and + 8 to +9 ‰ at these temperature conditions. This suggests that fluids released from subducted serpentinites may have variable δ18O under forearc conditions. The presence of fluids with variable δ18O can cause olivine in structures associated with fluid flow (e.g., shear bands, shear zones and veins) to be in isotopic equilibrium with magnetite, but in either isotopic equilibrium or disequilibrium with antigorite. Isotopic equilibrium with antigorite is achieved when the fluid responsible for olivine crystallization is internally derived. Isotopic disequilibrium is due to an externally derived fluid released by dehydration of serpentinite with a different isotopic composition than the serpentinite with which the fluid interacts. The restricted occurrence of non-equilibrated olivine only in shear bands and nearly pure Ol-veins indicates channelized fluid flow in subduction zone settings and demonstrates that isotopic disequilibrium can be used as a tracer for fluid infiltration.
Funding(s)
Swiss National Science Foundation / Projects / 0021-191959
Create date
15/03/2024 11:17
Last modification date
22/03/2024 9:31
Usage data