Book/Dissertation / PhD Thesis FZJ-2019-04264

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Techno-ökonomische Analyse alternativer Wasserstoffinfrastruktur



2019
Forschungszentrum Jülich GmbH Jülich
ISBN: 978-3-95806-414-0

Jülich : Forschungszentrum Jülich GmbH, Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment 467, 205 pp. () = Dissertation, RWTH Aachen University, 2019

Please use a persistent id in citations:  

Abstract: The decarbonisation of private transportation remains a challenge to tackle climate change. The utilization of green hydrogen for fuel cell electric vehicles offers a solution for that issue, but the hydrogen supply chain from production to refueling has lots of technological alternatives. The research objective of this work is to evaluate hydrogen infrastructure alternatives to supply the mobility sector with hydrogen and identify relevant technologies for that application in different regions. Furthermore, the influence of regional boundary conditions on the technology selection has to be investigated while drawing conclusions about the transferability of the given results. To achieve these objectives, a techno-economic model for the evaluation of various hydrogensupply chains was developed. Hence, different application areas depending on transportation distance and hydrogen demand were identified. The biggest area was occupied by hydrogen storage in salt cavern, transmission via pipeline and distribution by gaseous compressed hydrogen in trailer. An increasing hydrogen demand favors efficient, but cost-intensive systems like salt caverns or pipelines. In a second step, the techno-economic model was expanded by additional GIS based methodsto implement regional features into the analysis. Afterwards, the model was applied on Germany, France and Japan for three different stock shares of fuel cell electric vehicles (25 %, 50 %, and 75 %). The individual regional features of each country have always impact on the final technology selection. Nevertheless, geological storage formations and transmission pipelines are identified as key technologies for future hydrogen supply systems. Liquid hydrogen is costcompetitive if geological storage options like salt caverns are not available. Meanwhile, the promising LOHC technology requires further research especially regarding the CO$_{2}$-lean heat supply of the dehydrogenation. Finally, all investigated hydrogen supply chains enable CO$_{2}$-lean mobility with fuel cell electricvehicles. The most important factor remains the production of hydrogen with low greenhouse gas emissions


Note: Dissertation, RWTH Aachen University, 2019

Contributing Institute(s):
  1. Technoökonomische Systemanalyse (IEK-3)
Research Program(s):
  1. 134 - Electrolysis and Hydrogen (POF3-134) (POF3-134)

Appears in the scientific report 2019
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Theses > Ph.D. Theses
Institute Collections > IEK > IEK-3
Document types > Books > Books
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-08-15, last modified 2022-09-30