Trajectory optimization for arbitrary layered geometries in wire-arc additive manufacturing

Trajektorienoptimierung für beliebige Schichtgeometrien in der additiven Draht-Lichtbogen-Fertigung

  • In wire-arc additive manufacturing, a wire is molten by an electrical or laser arc and deposited droplet-by-droplet to construct the desired workpiece, given as a set of two-dimensional layers. The weld source can move freely over a substrate plate, processing each layer, but there is also the possibility of moving without welding. A primary reason for stress inside the material is the large thermal gradient caused by the weld source, resulting in lower product quality. Thus, it is desirable to control the temperature of the workpiece during the process. One way of its optimization is the trajectory of the weld source. We consider the problem of finding a trajectory of the moving weld source for a single layer of an arbitrary workpiece that maximizes the quality of the part and derive a novel mixed-integer PDE-constrained model, including the calculation of a detailed temperature distribution measuring the overall quality. The resulting optimization problem is linearized and solved using the state-of-the-art numerical solver IBMIn wire-arc additive manufacturing, a wire is molten by an electrical or laser arc and deposited droplet-by-droplet to construct the desired workpiece, given as a set of two-dimensional layers. The weld source can move freely over a substrate plate, processing each layer, but there is also the possibility of moving without welding. A primary reason for stress inside the material is the large thermal gradient caused by the weld source, resulting in lower product quality. Thus, it is desirable to control the temperature of the workpiece during the process. One way of its optimization is the trajectory of the weld source. We consider the problem of finding a trajectory of the moving weld source for a single layer of an arbitrary workpiece that maximizes the quality of the part and derive a novel mixed-integer PDE-constrained model, including the calculation of a detailed temperature distribution measuring the overall quality. The resulting optimization problem is linearized and solved using the state-of-the-art numerical solver IBM CPLEX. Its performance is examined by several computational studies.show moreshow less
  • Bei der additiven Draht-Lichtbogen-Fertigung wird ein Draht durch einen Licht- oder Laserlichtbogen geschmolzen und Tropfen für Tropfen aufgebracht, um das gewünschte Werkstück aus zweidimensionalen Schichten aufzubauen. Die Schweißquelle kann sich frei über eine Substratplatte bewegen und jede Schicht bearbeiten; zudem besteht auch die Möglichkeit, sich ohne Schweißen zu bewegen. Ein Hauptgrund für Spannungen im Material ist der große Wärmegradient, der durch die Schweißquelle verursacht wird, was zu einer geringeren Produktqualität führt. Daher ist es wünschenswert, die Temperatur des Werkstücks während des Prozesses zu steuern. Eine Möglichkeit dafür ist die Trajektorie der Schweißquelle. Wir betrachten das Problem, eine Trajektorie der sich bewegenden Schweißquelle für eine einzelne Schicht eines beliebigen Werkstücks zu finden, die die Qualität des Teils maximiert, und leiten ein neuartiges gemischt-ganzzahliges PDE-beschränktes Modell ab, einschließlich der Berechnung einer detaillierten Temperaturverteilung, welche zurBei der additiven Draht-Lichtbogen-Fertigung wird ein Draht durch einen Licht- oder Laserlichtbogen geschmolzen und Tropfen für Tropfen aufgebracht, um das gewünschte Werkstück aus zweidimensionalen Schichten aufzubauen. Die Schweißquelle kann sich frei über eine Substratplatte bewegen und jede Schicht bearbeiten; zudem besteht auch die Möglichkeit, sich ohne Schweißen zu bewegen. Ein Hauptgrund für Spannungen im Material ist der große Wärmegradient, der durch die Schweißquelle verursacht wird, was zu einer geringeren Produktqualität führt. Daher ist es wünschenswert, die Temperatur des Werkstücks während des Prozesses zu steuern. Eine Möglichkeit dafür ist die Trajektorie der Schweißquelle. Wir betrachten das Problem, eine Trajektorie der sich bewegenden Schweißquelle für eine einzelne Schicht eines beliebigen Werkstücks zu finden, die die Qualität des Teils maximiert, und leiten ein neuartiges gemischt-ganzzahliges PDE-beschränktes Modell ab, einschließlich der Berechnung einer detaillierten Temperaturverteilung, welche zur Beurteilung der Gesamtqualität benötigt wird. Das resultierende Optimierungsproblem wird linearisiert und mit dem aktuellen numerischen Löser IBM CPLEX gelöst. Die Performanz wird in mehreren Rechenstudien untersucht.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Johannes Schmidt, Armin FügenschuhORCiD
URN:urn:nbn:de:kobv:co1-opus4-62678
DOI:https://doi.org/10.26127/BTUOpen-6267
Series (Serial Number):Cottbus Mathematical Preprints (28, 2023)
Document Type:Working paper
Language:English
Year of Completion:2023
Release Date:2023/03/21
Tag:Additive Draht-Lichtbogen-Fertigung,; Finite-Elemente-Methode; Gemischt-ganzzahlige Programmierung; Partielle Differenzialgleichungen; Trajektorienplanung; Wärmeleitung
Finite element method; Heat conduction; Mixed-integer programming; Partial differential equations; Trajectory planning; Wire are additive manufacturing
GND Keyword:Trajektorie <Mathematik>; Partielle Differentialgleichung; Finite-Volumen-Methode; Wärmeleitung
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Ingenieurmathematik und Numerik der Optimierung
Licence (German):Creative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.