A solution framework for linear PDE-constrained mixed-integer problems

  • We present a general numerical solution method for control problems with PDE-defined state variables over a finite set of binary or continuous control variables. We show empirically that a naive approach that applies a numerical discretization scheme to the PDEs (and if necessary a linearization scheme) to derive constraints for a mixed-integer linear program (MILP) leads to systems that are too large to be solved with state-of-the-art solvers for MILPs, especially if we desire an accurate approximation of the state variables. Our framework comprises two techniques to mitigate the rise of computation times with increasing discretization level parameters: First, the linear system is solved for a basis of the control space in a preprocessing step. Second, certain constraints are just imposed on demand via the IBM ILOG CPLEX feature of a lazy constraint callback. These techniques are compared with an approach where the relations obtained by the discretization of the continuous constraints are directly included in the MILP. WeWe present a general numerical solution method for control problems with PDE-defined state variables over a finite set of binary or continuous control variables. We show empirically that a naive approach that applies a numerical discretization scheme to the PDEs (and if necessary a linearization scheme) to derive constraints for a mixed-integer linear program (MILP) leads to systems that are too large to be solved with state-of-the-art solvers for MILPs, especially if we desire an accurate approximation of the state variables. Our framework comprises two techniques to mitigate the rise of computation times with increasing discretization level parameters: First, the linear system is solved for a basis of the control space in a preprocessing step. Second, certain constraints are just imposed on demand via the IBM ILOG CPLEX feature of a lazy constraint callback. These techniques are compared with an approach where the relations obtained by the discretization of the continuous constraints are directly included in the MILP. We demonstrate our approach on two examples: modeling of the spread of wildfire and the mitigation of water contamination. In both examples the computational results demonstrate that the solution time is significantly reduced by our methods. In particular, the dependence of the computation time on the size of the spatial discretization of the PDE is significantly reduced.show moreshow less
  • Wir präsentieren eine allgemeine numerische Lösungsmethode für Steuerungsprobleme mit PDE-definierten Zustandsvariablen über einer endlichen Menge von binären oder kontinuierlichen Steuerungsvariablen. Wir zeigen empirisch, dass ein naiver Ansatz, der ein numerisches Diskretisierungsschema auf die PDEs anwendet (und erforderlichenfalls ein Linearisierungsschema), um Nebenbedingungen für ein gemischt-ganzzahliges lineares Programm (MILP) abzuleiten, zu Systemen führt, die zu groß sind, um selbst mit modernen MILP-Lösern gelöst zu werden, insbesondere wenn eine genaue Approximation der Zustandsvariablen gewünscht ist. Unser Ansatz umfasst zwei Techniken, um den Anstieg der Rechenzeiten mit zunehmender Feinheit der Diskretisierung abzumildern: Erstens wird das lineare System in einem Vorverarbeitungsschritt in den Variablen des Kontrollraums gelöst. Zweitens werden bestimmte Einschränkungen nur bei Bedarf über die IBM ILOG CPLEX-Funktion einer verzögerten Nebenbedingungs-Generierung zur Instanz hinzugefügt. Diese Techniken werden mitWir präsentieren eine allgemeine numerische Lösungsmethode für Steuerungsprobleme mit PDE-definierten Zustandsvariablen über einer endlichen Menge von binären oder kontinuierlichen Steuerungsvariablen. Wir zeigen empirisch, dass ein naiver Ansatz, der ein numerisches Diskretisierungsschema auf die PDEs anwendet (und erforderlichenfalls ein Linearisierungsschema), um Nebenbedingungen für ein gemischt-ganzzahliges lineares Programm (MILP) abzuleiten, zu Systemen führt, die zu groß sind, um selbst mit modernen MILP-Lösern gelöst zu werden, insbesondere wenn eine genaue Approximation der Zustandsvariablen gewünscht ist. Unser Ansatz umfasst zwei Techniken, um den Anstieg der Rechenzeiten mit zunehmender Feinheit der Diskretisierung abzumildern: Erstens wird das lineare System in einem Vorverarbeitungsschritt in den Variablen des Kontrollraums gelöst. Zweitens werden bestimmte Einschränkungen nur bei Bedarf über die IBM ILOG CPLEX-Funktion einer verzögerten Nebenbedingungs-Generierung zur Instanz hinzugefügt. Diese Techniken werden mit einem Ansatz verglichen, bei dem die durch die Diskretisierung der kontinuierlichen Nebenbedingungen erhaltenen Beziehungen direkt in das MILP einbezogen werden. Wir zeigen unseren Ansatz an zwei Beispielen: Modellierung der Ausbreitung eines Waldbrands und Minderung einer Wasserverschmutzung. In beiden Beispielen zeigen die Berechnungsergebnisse, dass die Lösungszeit durch unsere Methoden erheblich verkürzt wird. Insbesondere wird die Abhängigkeit der Rechenzeit von der Größe der räumlichen Diskretisierung der PDE deutlich reduziert.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Fabian Gnegel, Armin FügenschuhORCiD, Michael Hagel, Sven Leyffer, Marcus Stiemer
URN:urn:nbn:de:kobv:co1-opus4-50453
DOI:https://doi.org/10.26127/BTUOpen-5045
ISSN:2627-6100
Series (Serial Number):Cottbus Mathematical Preprints (8,2019)
Editor: Armin FügenschuhORCiD
Document Type:Report
Language:English
Year of Completion:2019
Release Date:2019/11/22
Tag:Finite-Elemente-Methode; Gemischt-ganzzahlige lineare Programmierung; Globale Optimalsteuerung; Konvektions-Diffusions-Gleichung; Partielle Differentialgleichungen
Convection-diffusion equation; Finite-element methods; Global optimal control; Mixed-integer linear programming; Partial differential equations
GND Keyword:Optimale Kontrolle; Finite-Elemente-Methode; Lineare Optimierung; Konvektions-Diffusionsgleichung
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Ingenieurmathematik und Numerik der Optimierung
Licence (German):Creative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.