Investigations of the physics potential and detector development for the ILC

Untersuchungen zum Physikpotential und zur Detektorentwicklung für den ILC

  • The International Linear Collider offers a lot of different interesting challenges concerning the physics of elementary particles as well as the development of accelerator and detector technologies. In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BeamCal, which is a sub-detector system of the ILC detector. After the Higgs boson has been found, it is important to determine its properties with high precision. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the electron-positron collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. This technique allows to measure the Higgs boson mass without considering the Higgs boson decay, i.e. it can be applied even to aThe International Linear Collider offers a lot of different interesting challenges concerning the physics of elementary particles as well as the development of accelerator and detector technologies. In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BeamCal, which is a sub-detector system of the ILC detector. After the Higgs boson has been found, it is important to determine its properties with high precision. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the electron-positron collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. This technique allows to measure the Higgs boson mass without considering the Higgs boson decay, i.e. it can be applied even to a Higgs boson invisibly decaying. Monte-Carlo studies including a full detector simulation and a full event reconstruction were performed to simulate the impact of a realistic detector model on the precision of the Higgs boson mass and production cross-section measurement. Also, an analytical estimate of the influence of a given detector performance on the Higgs boson mass measurement uncertainty is given. We included a complete sample of background events predicted by the Standard Model, which may have a detector response similar to the signal events. A probabilistic method is used for the signal-background separation. Several other probabilistic methods were used to investigate and improve the measurement of the Higgs-strahlung cross-section and the Higgs boson mass from the recoil mass spectrum obtained after the signal-background separation. For a Higgs boson mass of 120 GeV, a center-of-mass energy of 250 GeV and an integrated luminosity of 50/fb, a relative uncertainty of 10% is obtained for the cross-section measurement, and a precision of 118 MeV for the Higgs boson mass. The original motivation to use the recoil technique for a Higgs boson mass measurement independent on its decay modes could not be completely confirmed. For a Higgs boson mass of 180 GeV and 350 GeV, a statistics corresponding to 50/fb is not sufficient to achieve the necessary significance of the recoil mass peak above the background. The BeamCal is a calorimeter in the very forward region, about 3 m away from the nominal interaction point and surrounding the beam pipe. Due to its location, a lot of beamstrahlung pair particles will hit this calorimeter, representing a challenge for the operational reliability of the sensors under such harsh radiation conditions. We investigated single-crystal and polycrystalline CVD diamond, gallium arsenide and radiation-hard silicon as sensor candidates for their radiation hardness and found that diamond and gallium arsenide are promising. We used a 10 MeV electron beam of few nA to irradiate the samples under investigation up to doses of 5 MGy for diamond, up to about 1.5 MGy for gallium arsenide and up to about 90 kGy for silicon. We measured in regular periods the CCD to characterize the impact of the absorbed dose on the size of the signal, which is generated by electrons of a Sr-90 source crossing the sensor. Additional measurements such as the dark current and the CCD as functions of the voltage completed the characterization of the sensor candidates. For the single-crystal CVD diamond, also the thermally stimulated current was measured to determine amongst others the defect density created by irradiation. In the diamond samples, evidence for strong polarization effects inside the material was found and investigated in more detail. A phenomenological model based on semi-conductor physics was developed to describe the sensor properties as a function of the applied electric field, the dose and the dose rate. Its predictions were compared with the results of the measurements. Several parameters such as time scales and cross-sections were determined using this model, which led to ongoing investigations.show moreshow less
  • Der Internationale Linear Collider (ILC) bietet eine Vielfalt an interessanten Herausforderungen für die Elementarteilchenphysik, die Beschleuniger- und die Detektortechnologie. In der vorliegenden Arbeit untersuchen wir je ein Kernthema aus der Physik und der Detektortechnologie - zum einen die Präzisionsmessung der Higgs-Bosonenmasse und der Kopplung des Higgs-Bosons an das neutrale schwere Eichboson, Z, und zum anderen die Untersuchung und Entwicklung von Sensoren für BeamCal, einem Teildetektorsystem des ILC-Detektors. Das Higgs-Boson ist ein bisher nicht entdecktes fundamentales Teilchen, welches vom elektroschwachen Standardmodell vorhergesagt wird. Sehr wahrscheinlich wird es am LHC gefunden. Danach ist es wichtig, seine Eigenschaften mit hoher Präzision zu bestimmen. Wir benutzen dafür den Higgs-Strahlungsprozess. Ein virtuelles Z-Boson wird in einer Elektron-Positron-Kollision erzeugt, welches ein Higgs-Boson emittiert und dabei auf die Massenschale übergeht. Mit Hilfe der sogenannten Rückstosstechnik bestimmen wir dieDer Internationale Linear Collider (ILC) bietet eine Vielfalt an interessanten Herausforderungen für die Elementarteilchenphysik, die Beschleuniger- und die Detektortechnologie. In der vorliegenden Arbeit untersuchen wir je ein Kernthema aus der Physik und der Detektortechnologie - zum einen die Präzisionsmessung der Higgs-Bosonenmasse und der Kopplung des Higgs-Bosons an das neutrale schwere Eichboson, Z, und zum anderen die Untersuchung und Entwicklung von Sensoren für BeamCal, einem Teildetektorsystem des ILC-Detektors. Das Higgs-Boson ist ein bisher nicht entdecktes fundamentales Teilchen, welches vom elektroschwachen Standardmodell vorhergesagt wird. Sehr wahrscheinlich wird es am LHC gefunden. Danach ist es wichtig, seine Eigenschaften mit hoher Präzision zu bestimmen. Wir benutzen dafür den Higgs-Strahlungsprozess. Ein virtuelles Z-Boson wird in einer Elektron-Positron-Kollision erzeugt, welches ein Higgs-Boson emittiert und dabei auf die Massenschale übergeht. Mit Hilfe der sogenannten Rückstosstechnik bestimmen wir die Higgs-Bosonmasse durch Rekonstruktion des Impules des Z-Bosons und mittels der Schwerpunktsenergie der kollidierenden Leptonen. Diese Technik erlaubt es, die Higgs-Bosonmasse und die Kopplung an das Z-Boson zu messen ohne die Higgs-Zerfallsmoden zu betrachten, d.h. sie kann auch angewendet werden, wenn das Higgs-Boson in nicht detektierbare Teilchen zerfällt. Monte-Carlo Studien, die eine volle Detektorsimulation und eine volle Ereignisrekonstruktion enthalten, wurden durchgeführt, um den Einfluss eines realistischen Detektormodells auf die Präzision der Messgrößen abzuschätzen. Dazu wird analytisch sowie numerisch die Auswirkung der Impulsmessungspräzision auf die Messung der Higgs-Bosonmasse bestimmt. Wir fügten eine vollständige Menge an Hintergrundereignissen hinzu, wie sie vom Standardmodell vorausgesagt werden und welche eine Signatur im Detektor aufweisen, die der der Signalereignisse sehr ähnlich ist. Für die Unterscheidung von Signal- und Hintergrundereignissen wurde eine wahrscheinlichkeitsbasierte Methode benutzt. Weitere wahrscheinlichkeitstheoretische Methoden wurden verwendet, um die Messung des Higgs-Strahlungsprozesses und der Higgs-Bosonmasse aus dem Rückstossmassenspektrum nach der Signal-Hintergrund-Trennung zu untersuchen und zu verbessern. Für eine Higgs-Bosonmasse von 120 GeV, eine Schwerpunktenergie von 250 GeV und eine integrierte Luminosität von 50/fb wurde eine relative Unsicherheit von 10% für die Streuqueschnittmessung und eine Unsicherheit von 118 MeV für die Messung der Higgs-Bosonmasse erhalten. Die ursprüngliche Motivation für die Verwendung der Rückstosstechnik war die Bestimmung der Higgs-Bosonmasse unabhängig von seinen Zerfallskanälen. Diese Unabhängigkeit kann nicht vollständig bestätigt werden. Für eine Higgs-Bosonmasse von 180 GeV und für 350 GeV ist die notwendige Anzahl von Ereignissen bei 50/fb nicht ausreichend, um ein signifikantes Signal über dem Hintergrund zu erhalten. Das BeamCal ist ein Kalorimeter in der Vorwärtsregion des ILC-Detektors, etwa 3 m vom nominalen Wechselwirkungspunkt entfernt, und umgibt das Strahlrohr. Durch seine Position wird es einer großen Anzahl von Elektron-Positron-Paaren aus der Beamstrahlung ausgesetzt sein, was eine enorme Herausforderung f\"ur die Funktionstüchtigkeit und Zuverlässigkeit der Sensoren bei exterm hoher Strahlendosis bzw. -dosisrate darstellt. Wir untersuchten ein- und polykristalline CVD Diamant-, Galliumarsenid- und strahlenharte Siliziumsensormatrialen auf ihre Strahlenhärte und fanden vielversprechende Ergebnisse für Diamant und Galliumarsenid. Wir benutzten einen 10 MeV Elektronenstrahl von einigen nA, um die zu untersuchenden Sensorproben bis zu Dosen von 5 MGy für Diamant, bis etwa 1,5 MGy für Galliumarsenid und bis zu 90 kGy für Silizium zu bestrahlen. In regelmäßigen Abständen wurde die CCD mit relativistischen Elektronen aus einer Sr-90-Quelle gemessen, um den Einfluss der vom Sensor absorbierten Dosis auf die Größe des MIP-Signals zu bestimmen. Zusätzliche Messungen u.a. des Dunkelstromes und der CCD als Funktionen der angelegten Spannung vervollständigen die Charakterisierung der Sensormaterialkandidaten. Für den einkristallinen CVD Diamanten wurde auch der thermisch stimulierte Strom gemessen zur Bestimmung u.a. der Dichte der Defekte, die durch die Bestrahlung erzeugt wurden. Es wurden Hinweise auf starke Polarisationseffekte in den Diamantproben gefunden und detailierter untersucht. Um die Sensoreigenschaften als Funktion des angelegten elektrischen Feldes, der Dosis und der Dosisrate zu beschreiben, wurde ein phänomenologisches Modell entwickelt. Die Voraussagen dieses Modells wurden mit den Ergebnissen der Messungen verglichen und mehrere Parameter wie etwa Zeitkonstanten und Streuquerschnitte wurden mit Hilfe dieses Modells bestimmt. Das durch dieses Modell gewonnene Verständnis induzierte weiterführende Untersuchungen.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Martin Ohlerich
URN:urn:nbn:de:kobv:co1-opus-14409
Referee / Advisor:Prof. Dr. Jürgen Reif
Document Type:Doctoral thesis
Language:English
Year of Completion:2009
Date of final exam:2010/02/02
Release Date:2010/02/25
Tag:Detektor; Detektorentwicklung; Higgs-Bosonmasse; ILC
Detector development; Higgs boson mass; ILC
GND Keyword:Detektor; Speicherring; Higgs-Teilchen
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Experimentalphysik und funktionale Materialien
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Experimentalphysik / Materialwissenschaften
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.