Loading…
Thumbnail Image

Support of resource-aware vertical handovers in WLAN hotspots

Wiethölter, Sven

Endgeräte wie Smartphones oder Tablets bieten häufig eine Vielfalt drahtloser Zugänge zum Internet an. Üblicherweise schließt dies die 802.11 WLANs und auch Technologien drahtloser Weitverkehrsnetze (WWANs) aus dem Bereich LTE oder WiMAX ein. Aufgrund dieser Optionen haben sich die Endanwender daran gewöhnt, überall und zu jeder Zeit auf ihre Internetdienste zuzugreifen. Damit hat auch der Datenverkehr pro Anwender zugenommen, was eine Herausforderung insbesondere für die Betreiber von WWANs ist. Soweit verfügbar, favorisieren Endanwender heutzutage eher einen drahtlosen Zugang zum Internet über WLANs als über WWANs. Des Weiteren haben die 3GPP-Standardisierungsgremien Ansätze erarbeitet, die zusätzlich Verkehr aus WWANs in Netze mit geringerer Abdeckung wie WLAN- oder Femto-Zellen abgeben. Solche Ansätze werden auch als "Traffic Offloading" bezeichnet und haben das Ziel, die WWANs zu entlasten. Dabei werden jedoch eher einfache Strategien verfolgt, die auf der Nutzung zusätzlicher Kapazitäten heterogener Netze beruhen und dann angewendet werden, wenn ein alternatives Zugangsnetz für ein Endgerät verfügbar ist. Im Rahmen dieser Arbeit zeigen wir Gewinne auf, die entstehen, wenn man die Auswahl der Endgeräte für ein WLAN-Netz stattdessen auf Basis der von ihnen belegten Ressourcen durchführt. In diesem Kontext schlagen wir vor, Geräte mit stark negativem Einfluss auf die WLAN-Kapazität wieder zurück in das WWAN zu reichen, was wir als "Onloading" bezeichnen. Ein solches "Onloading" zieht Herausforderungen in unterschiedlichen Richtungen mit sich. Die fortschreitende Miniaturisierung hat in den letzten Jahren zu dem Trend geführt, die Anzahl der Netzwerkkarten (NICs) in Endgeräten zu reduzieren. Wir bezeichnen eine NIC als multimodal, wenn sie mehrere Funktechnologien unterstützt, aber zu einem bestimmten Zeitpunkt immer nur eine davon genutzt werden kann. Deswegen stellt für eine multimodale NIC das "Onloading" während einer laufenden Verbindung eine Herausforderung dar. Wir schlagen einen Ansatz vor, der vorbereitende Mechanismen für ein "Onloading" als auch eine laufende Verbindung im WLAN über eine solche NIC ermöglicht. Des Weiteren ist es wichtig, in einem WLAN Hotspot zu entscheiden, welche Geräte einen negativen Einfluss auf die Kapazität des Netzes haben. Dafür haben wir eine Metrik entwickelt, die eine Entscheidungsgrundlage für das Onloading bildet. Diese Metrik basiert rein auf einer Beobachtung des Netzes und seiner Geräte, ermöglicht jedoch keine Entscheidung für sich neu assoziierende Geräte im WLAN. Erschwerend kommt hinzu, dass viele Eigenschaften der NICs durch herstellerabhängige Implementierungen geprägt werden. Solche Algorithmen bieten eine zusätzliche Herausforderung, da ihre internen Abläufe üblicherweise unbekannt sind. Ein bekanntes Beispiel für solche Algorithmen stellt die Anpassung der WLAN-Link-Datenraten dar. Diese Algorithmen wählen die jeweiligen Modulations- und Kodierungsschemata (MCSs) für die drahtlosen Übertragungen aus. Robuste MCSs resultieren dabei in geringere Link-Datenraten und haben somit einen starken Einfluss auf die Kapazität einer WLAN-Zelle. Aus diesem Grund fokussieren wir uns auf eine Abschätzung der Datenratenwahl eines Endgerätes. Damit lassen sich im Vorfeld Aussagen treffen, ob ein Gerät starken Einfluss auf die WLAN-Kapazität haben wird, so dass es für ein "Onloading" in Frage kommt.
End-user devices such as smart phones and tablets have become very popular as they offer a variety of wireless Internet accesses ranging from the WLAN standards to WWAN technologies such as LTE or even WiMAX. Due to these different wireless access options and new emerging applications—e.g., from the areas of video streaming, social networks, as well as Internet clouds—people are increasingly connecting to the Internet with their de- vices while being on the move. In line with this, the number of devices as well as the traffic demand of end users have been reported to increase rapidly over the last years which imposes a strong challenge especially for the operators of WWANs. Thereby, end users frequently tend to use settings that favor a connectivity to the Internet whenever possible rather over WLAN than over WWAN access. Further, the cellular standardization bodies of the 3GPP envision solutions to hand over on-going wireless sessions from cellular to other small cell accesses such as WLANs or femto cells. This is also known as traffic offloading essentially freeing capacity in terms of users with a certain service in the cellular accesses. Nevertheless this offloading follows a rather simple strategy to utilize additional capacity of heterogeneous accesses such as WLANs whenever being available for a given device. This thesis shows that stronger gains can be expected if the selection of devices to be served in WLANs is conducted in a resource-aware fashion including an evaluation of the WLAN traffic in terms of the channel occupation time and MAC overhead as result of contention, interference, and fluctuating channels. In this context, this thesis envisions to onload unfavorable devices negatively affecting the WLAN capacity back to WWAN accesses. A support of such an onloading imposes challenges in different dimensions. From the hardware design of devices, there is a strong trend to limit the number of separate network interface cards (NICs) due to space and cost issues. We refer to a multi-mode NIC if it covers multiple technologies, while at a given time only access to one technology is possible. Thus, smoothly onloading a device with such a NIC is by far not trivial. We present an approach that conducts handover preparation mechanisms, while also allowing a continuous WLAN communication over a multi-mode NIC. Further, it is by far not trivial to judge which subset of associated devices is negatively affecting the capacity of a WLAN hotspot. Thus, a careful evaluation of devices regarding a selection for an onloading back to WWAN accesses imposes a challenge yet. In this direction, we present a performance metric that identifies devices degrading the WLAN capacity. While our performance metric tackles a reactive selection, it falls short to support a predictive evaluation, e.g., of devices which just joined the WLAN cell. Even worse, proprietary algorithms inside a WLAN stack impose a severe challenge as their internal routines are usually not conveyed via typical management interfaces. A well-known example for this category of algorithms are the link data rate adaptation schemes, with which WLAN devices adjust the modulation and coding scheme (MCS) for their transmissions. As MCSs resulting in low link data rates may specifically degrade the capacity of a WLAN cell, we focus on an estimation regarding the data rate selection of a device as a third contribution of this thesis. This estimation enables to select devices that will likely degrade the capacity of the WLAN hotspot for an onloading in advance.