Investigation of the stress tolerance regulatory network integration of the NAC transcription factor JUNGBRUNNEN1 (JUB1)

Untersuchung des Stresstoleranz-Regulationsnetzwerks des NAC-Transkriptionsfaktors JUNGBRUNNEN1 (JUB1)

  • The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) is an important negative regulator of plant senescence, as well as of gibberellic acid (GA) and brassinosteroid (BR) biosynthesis in Arabidopsis thaliana. Overexpression of JUB1 promotes longevity and enhances tolerance to drought and other abiotic stresses. A similar role of JUB1 has been observed in other plant species, including tomato and banana. Our data show that JUB1 overexpressors (JUB1-OXs) accumulate higher levels of proline than WT plants under control conditions, during the onset of drought stress, and thereafter. We identified that overexpression of JUB1 induces key proline biosynthesis and suppresses key proline degradation genes. Furthermore, bZIP63, the transcription factor involved in proline metabolism, was identified as a novel downstream target of JUB1 by Yeast One-Hybrid (Y1H) analysis and Chromatin immunoprecipitation (ChIP). However, based on Electrophoretic Mobility Shift Assay (EMSA), direct binding of JUB1 to bZIP63 could not be confirmed. Our dataThe NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) is an important negative regulator of plant senescence, as well as of gibberellic acid (GA) and brassinosteroid (BR) biosynthesis in Arabidopsis thaliana. Overexpression of JUB1 promotes longevity and enhances tolerance to drought and other abiotic stresses. A similar role of JUB1 has been observed in other plant species, including tomato and banana. Our data show that JUB1 overexpressors (JUB1-OXs) accumulate higher levels of proline than WT plants under control conditions, during the onset of drought stress, and thereafter. We identified that overexpression of JUB1 induces key proline biosynthesis and suppresses key proline degradation genes. Furthermore, bZIP63, the transcription factor involved in proline metabolism, was identified as a novel downstream target of JUB1 by Yeast One-Hybrid (Y1H) analysis and Chromatin immunoprecipitation (ChIP). However, based on Electrophoretic Mobility Shift Assay (EMSA), direct binding of JUB1 to bZIP63 could not be confirmed. Our data indicate that JUB1-OX plants exhibit reduced stomatal conductance under control conditions. However, selective overexpression of JUB1 in guard cells did not improve drought stress tolerance in Arabidopsis. Moreover, the drought-tolerant phenotype of JUB1 overexpressors does not solely depend on the transcriptional control of the DREB2A gene. Thus, our data suggest that JUB1 confers tolerance to drought stress by regulating multiple components. Until today, none of the previous studies on JUB1´s regulatory network focused on identifying protein-protein interactions. We, therefore, performed a yeast two-hybrid screen (Y2H) which identified several protein interactors of JUB1, two of which are the calcium-binding proteins CaM1 and CaM4. Both proteins interact with JUB1 in the nucleus of Arabidopsis protoplasts. Moreover, JUB1 is expressed with CaM1 and CaM4 under the same conditions. Since CaM1.1 and CaM4.1 encode proteins with identical amino acid sequences, all further experiments were performed with constructs involving the CaM4 coding sequence. Our data show that JUB1 harbors multiple CaM-binding sites, which are localized in both the N-terminal and C-terminal regions of the protein. One of the CaM-binding sites, localized in the DNA-binding domain of JUB1, was identified as a functional CaM-binding site since its mutation strongly reduced the binding of CaM4 to JUB1. Furthermore, JUB1 transactivates expression of the stress-related gene DREB2A in mesophyll cells; this effect is significantly reduced when the calcium-binding protein CaM4 is expressed as well. Overexpression of both genes in Arabidopsis results in early senescence observed through lower chlorophyll content and an enhanced expression of senescence-associated genes (SAGs) when compared with single JUB1 overexpressors. Our data also show that JUB1 and CaM4 proteins interact in senescent leaves, which have increased Ca2+ levels when compared to young leaves. Collectively, our data indicate that JUB1 activity towards its downstream targets is fine-tuned by calcium-binding proteins during leaf senescence.show moreshow less
  • Der NAC Transkriptionsfaktor (TF) JUNGBRUNNEN1 (JUB1) ist ein wichtiger negativer Regulator der Pflanzenseneszenz, Gibberellinsäure- (GA) und Brassinosteroid- (BR) Biosynthese in Arabidopsis thaliana. Die Überexpression von JUB1 fördert die Langlebigkeit und erhöht die Toleranz gegenüber Trockenheit und anderen abiotischen Belastungen. Bei anderen Pflanzenarten, einschließlich Tomaten und Bananen, wurde eine ähnliche Rolle von JUB1 beobachtet. Unsere Daten zeigen, dass JUB1 Überexpressionslinien im Vergleich zu WT-Pflanzen sowohl unter Kontrollbedingungen, als auch zu Beginn und während späterer Stadien von Trockenstress größere Mengen an Prolin akkumulieren. Wir haben festgestellt, dass die Überexpression von JUB1 die Schlüsselbiosynthese von Prolin induziert und Schlüsselgene für den Abbau von Prolin unterdrückt. Darüber hinaus wurde bZIP63, ein am Prolinstoffwechsel beteiligter Transkriptionsfaktor, mittels Yeast One-Hybrid-System (Y1H) und Chromatin-Immunopräzipitation (ChIP) als neues nachgeschaltetes Ziel von JUB1Der NAC Transkriptionsfaktor (TF) JUNGBRUNNEN1 (JUB1) ist ein wichtiger negativer Regulator der Pflanzenseneszenz, Gibberellinsäure- (GA) und Brassinosteroid- (BR) Biosynthese in Arabidopsis thaliana. Die Überexpression von JUB1 fördert die Langlebigkeit und erhöht die Toleranz gegenüber Trockenheit und anderen abiotischen Belastungen. Bei anderen Pflanzenarten, einschließlich Tomaten und Bananen, wurde eine ähnliche Rolle von JUB1 beobachtet. Unsere Daten zeigen, dass JUB1 Überexpressionslinien im Vergleich zu WT-Pflanzen sowohl unter Kontrollbedingungen, als auch zu Beginn und während späterer Stadien von Trockenstress größere Mengen an Prolin akkumulieren. Wir haben festgestellt, dass die Überexpression von JUB1 die Schlüsselbiosynthese von Prolin induziert und Schlüsselgene für den Abbau von Prolin unterdrückt. Darüber hinaus wurde bZIP63, ein am Prolinstoffwechsel beteiligter Transkriptionsfaktor, mittels Yeast One-Hybrid-System (Y1H) und Chromatin-Immunopräzipitation (ChIP) als neues nachgeschaltetes Ziel von JUB1 identifiziert. Basierend auf dem Electrophoretic Mobility Shift Assay (EMSA) konnte die direkte Bindung von JUB1 an bZIP63 jedoch nicht bestätigt werden. Unsere Daten zeigen, dass JUB1-OXs unter Kontrollbedingungen eine niedrigere stomatale Leitfähigkeit aufweisen. Allerdings verbessert eine selektive Überexpression von JUB1 in den Schließzellen die Trockenstresstoleranz bei Arabidopsis nicht. Darüber hinaus hängt der trockenheitstolerante Phänotyp von JUB1 nicht allein von der transkriptionellen Kontrolle des DREB2A-Gens ab. Unsere Daten legen daher nahe, dass JUB1 durch die Regulierung mehrerer Komponenten Toleranz gegenüber Trockenstress verleiht. Bis heute konzentrierte sich keine der bisherigen Studien zum regulatorischen Netzwerk von JUB1 auf die Identifizierung von Protein-Protein-Interaktionen. Wir führten deshalb einen Hefe-Zwei-Hybrid-Screen (Y2H) durch, der mehrere Protein-Interaktoren von JUB1 identifizierte, von denen zwei Calcium-bindende Proteine sind (CaM1 und CaM4). Beide Proteine interagieren mit JUB1 im Kern von Arabidopsis-Protoplasten. Darüber hinaus wird JUB1 mit den CaM1- und CaM4-Genen unter den gleichen Bedingungen exprimiert und kolokalisiert mit den Proteinen im Zellkern von Arabidopsis thaliana-Protoplasten. Unsere Daten zeigen, dass JUB1 mehrere CaM-Bindungsstellen aufweist, die sowohl in der N-terminalen, als auch in der C-terminalen Region des Proteins lokalisiert sind. Eine der CaM-Bindungsstellen, die in der DNA-Bindungsdomäne von JUB1 lokalisiert ist, wurde als funktionelle und aktive CaM-Bindungsstelle identifiziert, da ihre Mutation die Bindung von CaM4 an JUB1 stark reduzierte. Darüber hinaus transaktiviert JUB1 die Expression des stressbezogenen Gens DREB2A in Mesophyllzellen. Dieser Effekt wird deutlich reduziert, wenn auch das Calcium-bindende Protein CaM4 exprimiert wird. Die Überexpression beider Gene in Arabidopsis führt zum frühen Seneszenz-Phänotyp, der durch einen verminderten Chlorophyllgehalt und eine veränderte SAGs-Expression im Vergleich zu einzelnen JUB1-Überexpressoren beobachtet wird. Unsere Daten zeigen auch, dass JUB1- und CaM4-Proteine in den seneszenten Blättern, die im Vergleich zu jungen Blättern erhöhte Ca2+-spiegel aufweisen, interagieren. Zusammenfassend weisen unsere Daten darauf hin, dass während der Blattseneszenz die Aktivität von JUB1 gegenüber seinen nachgeschalteten Zielen durch die Calcium-bindenden Proteine fein abgestimmt wird.show moreshow less

Download full text files

  • SHA-512:8627213e724178b837d19bbe22ec3350d0e60320a05eda3a39b35752da211284b90c856248094e3eeaaa63f9dd582d845c2bc3632f640fcb8f30be6536fb0b15

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Maryna WelschORCiD
URN:urn:nbn:de:kobv:517-opus4-547310
DOI:https://doi.org/10.25932/publishup-54731
Reviewer(s):Bernd Müller-RöberORCiDGND, Friedrich KraglerORCiD, Wolfang Dröge-LaserORCiD
Supervisor(s):Bernd Müller-Röber, Salma Balazadeh
Publication type:Doctoral Thesis
Language:English
Year of first publication:2022
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/03/09
Release date:2022/05/12
Tag:CaM4; JUB1; Seneszenz; Transkriptionsfaktor; Trockenstress; calmodulin
CaM4; JUB1; calmodulin; drought stress; senescence; transcription factor
Number of pages:XIII, 116
RVK - Regensburg classification:WN 1950, WG 1840
Organizational units:Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.