Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice

  • Background: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified thatBackground: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. Conclusion: This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance.show moreshow less

Download full text files

  • pmnr619.pdfeng
    (2507KB)

    SHA-1: 4d08af9a2bb3b80306fa2b8235a4dae3c1e25689

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Niharika Sharma, Trang Minh Dang, Namrata Singh, Slobodan Ruzicic, Bernd Müller-RöberORCiDGND, Ute Baumann, Sigrid Heuer
URN:urn:nbn:de:kobv:517-opus4-423508
DOI:https://doi.org/10.25932/publishup-42350
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (619)
Publication type:Postprint
Language:English
Date of first publication:2019/02/18
Publication year:2018
Publishing institution:Universität Potsdam
Release date:2019/02/18
Tag:SUB1A; rice; submergence tolerance; transcription factors
Issue:619
Number of pages:19
Source:Rice 11 (2018), Art. 2 DOI 10.1186/s12284-017-0192-z
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 63 Landwirtschaft / 630 Landwirtschaft und verwandte Bereiche
6 Technik, Medizin, angewandte Wissenschaften / 64 Hauswirtschaft und Familie / 640 Hauswirtschaft und Familie
Peer review:Referiert
Publishing method:Open Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.