Differential effects of young (growing) versus old (grown-up) bone marrow microenvironments on leukaemias by release of the cytokines CXCL13 and GDF11 from bone marrow stroma

  • While B-cell acute lymphoblastic leukaemia (B-ALL) can be described as the leukaemia of childhood, chronic myeloid leukaemia (CML) mostly develops in elderly individuals. Understanding and utilising mechanisms involved in the development and persistence of these leukaemias as possible targets for treatment strategies has received particular interest. Processes that happen in the vicinity of the cancerous cells themselves could influence cancer growth and behaviour and hence can serve as novel targets, leading to the development of two-pronged therapies that act both on leukaemic cells directly as well as their niche. The niche in the case of leukaemia is the bone marrow microenvironment (BMM) where these cells are not only generated but also instructed and protected. As the BMM is situated inside bones that undergo drastic changes and growth processes during the ageing process, the BMM itself is also being altered throughout life. These alterations and the very process of expansion itself may therefore also provide distinct regulatory influences on the cells (healthy or malignant) that are generated inside this niche, leading to the question: Does the age of the bone marrow microenvironment differentially influence the development of (“childhood”) B-ALL versus (“adult”) CML by the release of cytokines? In previous studies by the host-laboratory the age distribution of B-ALL versus CML in a murine transduction/ transplantation model could be recapitulated; young mice which received the same number of leukaemia-initiating cells as their old counterparts died significantly earlier of B-ALL while showing a significantly delayed clinical course, when they were suffering from CML. The tumour load and other leukaemia-associated parameters also showed a clear disposition towards preferential induction of CML in elderly and B-ALL in younger mice. In this project we could support the hypothesis that the age of the BMM differentially influences the proliferation of leukaemic cells and thereby the development and persistence of different types of leukaemias by utilising different in vitro culture experiments. Specifically, we could show that young (compared to old) bone marrow 11 stroma cells (BMSC) support the growth of (BCR-ABL1+) B-ALL cells both in a direct, cell on cell co-culture setting, as well as in young BMSC-derived conditioned medium. This supports the hypothesis that varying factors are differentially released from a young versus an old BMM and influence the growth of the leukaemia cells. The opposite might be true for CML cells (BCR-ABL1+ 32D cells); BMSC obtained from old animals showed a tendency to support their growth more profoundly than cells acquired from young animals. Possible proteins responsible for the distinct regulation of myeloid versus lymphatic leukaemic cells by young versus old BMM have also been studied. We investigated C-X-C motif chemokine 13 (CXCL13) and growth differentiation factor 11 (GDF11) in their effect on leukaemia cells, as both proteins having previously been described to have tumour-modelling properties and age-dependent levels (see below). We identified an increased secretion of CXCL13, a B-cell chemotactic factor, into conditioned medium from young versus old BMSC. In accordance with this we found migration of B-ALL cells towards BMSC from young compared to old mice to be improved, while adhesion of both B-ALL and CML cells to young versus old BMSC did not show any differences. By blocking CXCL13 the proliferation-supporting effect of young BMSC on B-ALL cells could be diminished. Similar effects could be demonstrated by blocking GDF11. In the case of CML cells we could observe the opposite effect; blocking CXCL13 and GDF11 increased their proliferation in a co-culture with BMSC. This supported our hypothesis that both cytokines differentially regulate B-ALL and CML behaviour. After the completion of this thesis, another member of the host-laboratory convincingly demonstrated the role of BMM age in the regulation of B-ALL via CXCL13 signalling (see discussion).

Download full text files

Export metadata

Metadaten
Author:Joscha EnderGND
URN:urn:nbn:de:hebis:30:3-702140
DOI:https://doi.org/10.21248/gups.70214
Place of publication:Frankfurt am Main
Referee:Daniela Sandra KrauseORCiDGND, Manuel KaulichORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/09/30
Year of first Publication:2022
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/09/27
Release Date:2022/10/18
Tag:CXCL13; GDF11; bone marrow microenvironment; leukaemia
Page Number:77
HeBIS-PPN:500581037
Institutes:Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht