Zeitaufgelöste Bestimmung der integrierten Elektronen- und Neutralgasdichte in einem Wasserstoff-Theta-Pinch-Plasma mittels Zweifarben-Interferometrie

  • Im Zentrum dieser Arbeit steht die Diagnostik eines Wasserstoff-Theta-Pinch-Plasmas hinsichtlich der integrierten Elektronen- und Neutralgasdichte mittels Zweifarben Interferometrie. Die integrierte Elektronen- und Neutralgasdichte sind essenzielle Größen, aus welchen sich die Ratenkoeffizienten der Ionisation und Rekombination bei einer Plasma-Ionenstrahl-Wechselwirkung bestimmen lassen. Ein Theta-Pinch-Plasma ist ein induktiv gezündetes Plasma, wobei das zur Zündung notwendige elektrische Feld durch ein magnetisches Wechselfeld generiert wird. Das induzierte, azimutale elektrische Feld beschleunigt freie Elektronen im Arbeitsgas, welches durch Stoßionisation in den Plasmazustand gebracht wird. Der azimutale Plasmastrom erzeugt einen radialen magnetischen Druckgradienten, der das Plasma komprimiert. Da in axialer Richtung keine Kompressionskraft wirkt, weicht das Plasma einer weiteren Kompression aus, wodurch es zu einer axialen Expansion des Plasmas kommt. Die Expansion erzeugt eine Ionisationswelle im kalten Restgas und es wird eine lange, hoch ionisierte Plasmasäule gebildet. Dieser hochdynamische Prozess ist mit einem Mach-Zehnder-Interferometer bei der Verwendung von zwei verschiedenen Versionen des Theta-Pinchs zeitaufgelöst untersucht worden. Der Unterschied dieser Versionen liegt in der Geometrie und Induktivität der Spulen, wobei zum einen eine zylindrische und zum anderen eine sphärische Spule eingesetzt worden ist. Das grundlegende Messprinzip beruht darauf, dass das Plasma einen Brechungsindex besitzt, welcher von den Dichten der im Plasma enthaltenen Teilchenspezies abhängt. In einem Wasserstoffplasmas sind dies der Beitrag der freien Elektronen und der des Neutralgases, wodurch ein Zweifarben-Interferometer eingesetzt wird. Um eine von den Laserintensitäten unabhängige Messung zu ermöglichen, wird das heterodyne Verfahren benutzt, bei dem die Referenzstrahlen beider Wellenlängen jeweils mit einem akusto-optischen Modulator frequenzverschoben werden. Durch einen Vergleich mit einem stationären Referenzsignal mittels eines I/Q-Demodulators wird die interferometrische Phasenverschiebung aus dem Messsignal extrahiert. Mit diesem diagnostischen Verfahren ist die integrierte Elektronen- und Neutralgasdichte des Theta-Pinch-Plasmas bei Variation des Arbeitsdrucks und der Ladespannung der Kondensatorbank untersucht worden. Mit der zylindrischen Experimentversion ist eine optimale Kombination aus integrierter Elektronendichte und effektivem Ionisationsgrad η von (1,45 ± 0,04) · 1018 cm−2 bei η = (0,826 ± 0,022) bei einem Arbeitsdruck von 20 Pa und einer Ladespannung von 16 kV ermittelt worden. Dagegen beträgt die optimale Kombination bei einem Arbeitsdruck von 20 Pa und einer Ladespannung von 18 kV bei Verwendung der sphärischen Experimentversion lediglich (1,23 ± 0,03) · 1018 cm−2 bei η = (0,699 ± 0,019). Des Weiteren ist bei beiden Experimentversionen nachgewiesen worden, dass die integrierte Elektronendichte dem oszillierenden Strom folgend periodische lokale Maxima zeigt, welche zeitlich mit signifikanten Einbrüchen in der integrierten Neutralgasdichte zusammenfallen. Diese Einbrüche werden durch die axiale Expansion des Plasmas und der damit verbundenen Ionisationswelle im Restgas erzeugt. Neben diesem zentralen Teil dieser Arbeit ist eine lasergestützte polarimetrische Diagnostik durchgeführt worden, mit der die longitudinale Komponente der magnetischen Flussdichte der Theta-Pinch-Spulen zeit- und ortsaufgelöst bestimmt worden ist. Als Messprinzip ist der Faraday-Effekt eines magneto-optischen TGGKristalls verwendet worden. Vor der polarimetrischen Diagnostik ist der TGG-Kristall bezüglich seiner Verdet- Konstante kalibriert worden, wobei ein Wert von V = (−149,7 ± 6,4) rad/Tm gemessen worden ist. Die ortsaufgelöste polarimetrische Diagnostik ist durch einen Seilzug ermöglicht worden, mit dem der TGG-Kristall auf einem Schlitten an unterschiedliche Positionen entlang der Spulenachse gefahren werden konnte. An den jeweiligen Messpunkten ist für beide Experimentversionen die magnetische Flussdichte für verschiedene Ladespannungen zeitaufgelöst bestimmt worden. Als Messverfahren ist dabei das Δ/Σ-Verfahren eingesetzt worden, mit dem sich eine intensitätsunabhängige Messung erzielen ließ. Die ortsaufgelösten Messergebnisse fallen gegenüber Simulationen allerdings zu niedrig aus. Bei der zylindrischen Spule betragen die Abweichungen im Spulenzentrum circa 14 - 16% und bei der sphärischen Spule in etwa 16 - 18%. Bei einer Normierung der Messwerte und der simulierten Werte auf den jeweiligen Wert im Zentrum ist dagegen innerhalb der Fehler eine völlige Übereinstimmung zwischen den Messwerten und der Simulation für die zylindrische Spule erzielt worden. Als Ursache der negativen Abweichungen wird die Hysterese des TGG-Kristalls diskutiert. Es zeigt sich insbesondere zu Beginn der Entladung eine zeitliche Verzögerung der gemessenen magnetischen Flussdichte gegenüber dem Strom, die in der Umgebung des Stromnulldurchgangs besonders stark ausgeprägt ist.

Download full text files

Export metadata

Metadaten
Author:Philipp ChristORCiDGND
URN:urn:nbn:de:hebis:30:3-702021
DOI:https://doi.org/10.21248/gups.70202
Place of publication:Frankfurt am Main
Referee:Joachim JacobyGND, Ulrich RatzingerORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2022/09/29
Year of first Publication:2022
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/09/23
Release Date:2022/10/19
Tag:Interferometrie; Theta-Pinch
Page Number:155
HeBIS-PPN:500587469
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht