Tuning an elevator : conformational space of the SLC23 transporter UraA and its rational modulation by off-site mutations and conformational-selective binders

  • Solute carrier (SLC) are related to various diseases in human and promising pharmaceutical targets but more structural and functional information on SLCs is required to expand their use for drug design and therapy. The 7-transmembrane segment inverted (7-TMIR) fold was identified for the SLC families 4, 23 and 26 in the last decade thus detailed analysis of the structure function relationship of one of these families might also yield insights for the other two. SVCT1 and SVCT2 from the SLC23 family are sodium dependent ascorbic acid transporters in human but structural analysis of the SLC23 family is exclusively based on two homologs – UraA from E. coli and UapA from A. nidulans – yielding two inward-facing and one occluded conformation. In combination with outward-facing conformations from SLC4 transporters, and additional information from the SLC26 family, an elevator transport mechanism for all 7-TMIR proteins was identified but detailed mechanistic features of the transport remain elusive due to the lack of multiple conformations from individual transporters. To increase the understanding of 7-TMIR protein structure and function in this study, the transport mechanism of SLC23 transporters was analyzed by two strategies including selection of alpaca derived nanobodies and synthetic nanobodies against UraA as prokaryotic model protein of the SLC23 family. The second strategy involved mutagenesis of UraA at functional relevant positions regarding the conformational change during transport. Therefore, available structures of 7-TMIR proteins and less related elevator transporters were analyzed and a common motif identified – the alpha helical inter-domain linkers. The proposed rigid body movement for transport in combination with the characteristic alpha helical secondary structure of the linkers connecting both rigid bodies led to the hypothesis of functional relevance of the linkers and a conformational hinge being located in close proximity to the linkers. These positions were identified and used to modulate the biophysical properties of the transporter. Mutagenesis at three relevant positions led to loss of transport functionality and these UraA variants could be recombinantly produced and purified to further examine the underlying mechanistic effects. The variants UraAG320P and UraAP330G from the periplasmic inter-domain linker showed increased dimerization and thermal stability as well as substrate binding in solution. The substrate affinity of UraAG320P was identified to be 5-fold higher compared to the wildtype. The solvent accessibility of the substrate binding site in UraAG320P and UraAP330G revealed reduced open probability that indicated an altered conformational space compared to UraAWT. This phenomenon was analyzed in more detail by differential hydrogen-deuterium exchange mass spectrometry and the results supported the hypothesis of a reduced open probability and gave further insights into the impact of the two mutations in the periplasmic inter-domain linker in UraA. This thesis further presents strategies for phage display selection of nanobodies with epitope bias and a post selection analysis pipeline to identify nanobodies with desired binding characteristics. Thereby, whole cell transport inhibition highlighted periplasmic epitope binders and conformational selectivity. A cytoplasmic epitope could be identified by pulldown with inside-out membrane vesicles for one cytoplasmic side binder. Thermal stabilization analysis of the target protein in differential scanning fluorometry was performed in presence of two different nanobodies to identify simultaneous binding by additional thermal stabilization respectively competition by intermediate melting temperatures. Combination of epitope information with simultaneous DSF could be used to identify the stabilization of different UraA conformations by a set of binders and presents a general nanobody selection strategy for other SLCs. Synthetic nanobodies (sybodies) were also included in the analysis pipeline and Sy45 identified as promising candidate for co-crystallization that gave rise to UraAWT crystals in several conditions in presence or absence of uracil. Similar crystals could be obtained in combination with UraAG320P that were further optimized to gain structural information on this mutant. The structure was solved by molecular replacement and the model refined at 3.1 Å resolution confirming the cytoplasmic epitope of Sy45 as predicted by the selection pipeline. The stabilized conformation was inward-facing similar to the reported UapA structure but significantly different to the previously reported inward-facing structure of UraA. The structure further confirmed the structural integrity of the UraA mutant G320P. Despite the monomeric state of UraA in the structure, the gate domain aligned reasonably well with the gate domain of the previously published dimeric UraA structure in the occluded conformation and allowed detailed analysis of the conformational transition in UraA from inward-facing to occluded by a single rigid body movement. Thereby little movement in the gate domain of UraA was observed in contrast to a previously reported transport mechanism. Core domain rotation around a rotation axis parallel to the substrate barrier was found to explain the major part of conformational transition from inward-facing to occluded and experimentally supported the hypothesized mechanism by Chang et al. (2017). Additionally, the conformational hinge around position G320 in UraA could be identified as well as the impact of the backbone rigidity introduced by the highly conserved proline residue at position 330 in UraA on the conformational transition. This position was found to serve as anchoring point the inter-domain linker and determines the coordinated movement of inter-domain linker and core domain. The functional analysis further highlighted the requirement of alpha helical secondary structure within the inter-domain linker that serves as amphipathic structural entity that can adjust to changed core-gate domain distances and angles during transport by extension/compression or bending while preserving the rigid linkage. The applied strategies to modulate the conformational space of UraA by mutagenesis at the hinge positions in the inter-domain linkers is transferrable to other transporters and might facilitate their structural and functional characterization. Further, this study discusses the conformational thermostabilization of UraA that is based on increased melting temperatures upon restriction of its conformational freedom. The term ‘conformational thermostabilization’ introduced by Serrano-Vega et al. (2007) could be experimentally supported and the direct correlation between the conformational freedom and thermostabilization was qualitatively analyzed for UraA. The concept of conformational thermostabilization might help in characterization of other dynamic transport systems as well.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Benedikt Thomas KuhnORCiDGND
URN:urn:nbn:de:hebis:30:3-686145
DOI:https://doi.org/10.21248/gups.68614
Place of publication:Frankfurt am Main
Referee:Klaas Martinus PosORCiD, Volker DötschORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/09/06
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/09/27
Release Date:2022/10/21
Page Number:197
HeBIS-PPN:50068426X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht