Untersuchungen zur Physiologie und Energiekonservierung im acetogenen Bakterium Eubacterium callanderi KIST612

  • 1. Das Wachstum und die Fähigkeit zur Butyratproduktion von E. callanderi KIST612 wurde in geschlossenen Batch-Kulturen mit den Substraten Glukose, Methanol, Formiat, H2 + CO2 und CO untersucht. E. callanderi KIST612 zeigte sich nur bei Wachstum auf 20 mM Glukose oder 20 mM Methanol in der Lage, Butyrat in größeren Mengen (3,7 – 4,3 mM) zu produzieren. Das Hauptprodukt bei allen untersuchten Wachstumssubstraten war jedoch Acetat. 2. In bioinformatischen Analysen des Genoms von E. callanderi KIST612 konnte nur eine A1AO-ATP-Synthase gefunden werden, welche eine V-typ c-Untereinheit bestehend aus 4 TMH‘s mit nur einer Na+-Bindestelle aufweist. Diese konnte aus gewaschenen Membranen von E. callanderi durch Saccharose-Dichtegradientenzentrifugation, Anionenaustausch-Chromatographie (DEAE) sowie einer Größenausschluss-Chromatographie (Superose 6) bis zur apparenten Homogenität gereinigt werden. Nach Produktion einzelner Untereinheiten (A, B, C, D, E, F und H) in E. coli und Generierung von Antikörpern, konnten alle Untereinheiten (A, B, C, D, E, F, H, a sowie c) in der gereinigten Enzympräparation immunologisch oder mittels „Peptide-Mass-Fingerprinting“ nachgewiesen werden. Es konnte somit erstmals eine A1AO-ATP-Synthase aus einem mesophilen Organismus ohne Verlust von Untereinheiten gereinigt werden. 3. Der Gesamtkomplex wies unter nativen Bedingungen eine molekulare Masse von ca. 670 kDa auf. In elektronenmikroskopischen Aufnahmen zeigte sich anhand der hantelförmigen Strukturen, dass die A1AO-ATP-Synthase als intakter Gesamtkomplex gereinigt werden konnte. 4. Die gereinigte A1AO-ATP-Synthase wurde zunächst anhand ihrer ATP-Hydrolyse-Aktivität biochemisch charakterisiert. Die ATP-Hydrolyse-Aktivität hatte ein pH-Optimum von 7 – 7,5 und ein Temperaturoptimum bei 37 °C. Durch Messung der ATPase-Aktivität in Abhängigkeit von verschiedenen Mengen an Na+ konnte die vorhergesagte Na+-Abhängigkeit des Enzyms nachgewiesen werden. Zudem zeigten Hemmstoffexperimente mit DCCD, dass dieser Inhibitor mit Na+ um die gemeinsame Bindestelle in der c-Untereinheit konkurriert. Dies bestätigte nochmals, dass das Enzym funktionell gekoppelt gereinigt werden konnte. 5. Zur weiteren Untersuchung der Ionenspezifität wurde der an die ATP-Hydrolyse gekoppelte Ionentransport durch Rekonstitution des Enzyms in Liposomen und anschließender Messung des Na+- oder H+-Transports gemessen. In den Proteoliposomen konnte mit Hilfe von 22Na+ gezeigt werden, dass das Enzym Natriumionen translozieren kann. Während in Anwesenheit des Natriumionophors ETH 2120 kein 22Na+-Transport beobachtet werden konnte, führte die Anwesenheit des Protonophors TCS zu einer geringfügigen Stimulation der 22Na+-Translokation. Insgesamt konnte ein primärer Na+-Transport nachgewiesen werden, welcher von der A1AO-ATP-Synthase aus E. callanderi katalysiert wird. 6. Durch Rekonstitution der A1AO-ATP-Synthase aus E. callanderi in Liposomen konnte erstmals biochemisch nachgewiesen werden, dass ein solches Enzym trotz seiner V-Typ c-Untereinheit in der Lage ist, ATP zu synthetisieren. Durch die Zugabe von Ionophoren (ETH 2120 und TCS) konnte der elektrochemische Ionengradient aufgehoben werden, wodurch keine ATP-Synthese beobachtet werden konnte. Der erstmalige Nachweis der ATP-Synthese wurde bei einem ΔµNa+ von 270 mV erbracht. 7. Die ATP-Synthese zeigte sich ebenfalls abhängig von der Na+-Konzentration. Der KM-Wert lag bei 1,1 ± 0,4 mM und war vergleichbar mit dem für die ATP-Hydrolyse ermittelten Wert. Ebenso konnte für die ATP-Synthese-Richtung gezeigt werden, dass DCCD mit Na+ um die gemeinsame Bindestelle in der c-Untereinheit konkurriert. 8. Um den biochemischen Nachweis zu erbringen, dass die A1AO-ATP-Synthase auch unter physiologisch relevanten Potentialen zur ATP-Synthese befähigt ist, wurde der energetische Schwellenwert der ATP-Synthese bestimmt. Dieser betrug 87 mV als Triebkraft für ΔpNa, 94 mV als Triebkraft für Δψ und 90 mV als Triebkraft für ΔµNa+. Erstaunlicherweise konnte die ATP-Synthese der A1AO-ATP-Synthase aus E. callanderi KIST612 sowohl durch Δψ als auch ΔpNa angetrieben werden. Unterschiedliche Kombinationen von Δψ und ΔpNa führten zu dem gleichen energetischen Schwellenwert; Δψ und ΔpNa waren im Enzym aus E. callanderi KIST612 äquivalente Triebkräfte. 9. Der energetische Schwellenwert der A1AO-ATP-Synthase aus E. callanderi KIST612 wurde mit dem der F1FO-ATP-Synthasen aus A. woodii, E. coli und P. modestum verglichen. Dazu wurden die Enzyme im ATP-Synthase-defizienten E. coli-Stamm DK8 produziert und anschließend durch Ni2+-NTA-Affinitätschromatographie gereinigt. Nach Einbau der Enzyme in Liposomen waren alle Enzyme in der Lage, ATP als Reaktion auf ΔµNa+ (A. woodii und P. modestum) oder ΔµH+ (E. coli) zu synthetisieren. Im Vergleich zum Enzym aus E. callanderi zeigten sich zwei auffällige Unterschiede. Erstens war keine der F1FO-ATP-Synthasen in der Lage, ΔpNa/ΔpH als alleinige Triebkraft zu nutzen. Während die ATP-Synthese in den Enzymen aus E. coli und P. modestum nur durch ΔµH+ bzw. ΔµNa+ angetrieben werden konnte, konnte das Enzym aus A. woodii zusätzlich auch durch Δψ als einzige Triebkraft angetrieben werden. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dennis LittyGND
URN:urn:nbn:de:hebis:30:3-668818
DOI:https://doi.org/10.21248/gups.66881
Place of publication:Frankfurt am Main
Referee:Volker MüllerORCiD, Klaas Martinus PosORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2022/02/13
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/02/11
Release Date:2022/02/15
Page Number:169
HeBIS-PPN:490989055
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht