Interaction between entomopathogenic bacteria and their hosts

  • Photorhabdus and Xenorhabdus are Gram-negative, entomopathogenic bacteria, living in endosymbiosis with the soil-dwelling nematode of the genera Steinernema and Heterorhabditis. The life cycle of these nematodes consists of non-feeding infective juvenile (IJ) stage, which actively searches for insects in the soil. After penetrating the insect prey, Photorhabdus and Xenorhabdus bacteria are released from the nematode gut. The bacteria proliferate and produce toxins to kill the insect. Photorhabdus and Xenorhabdus support nematode development throughout the life cycle and to get rid of food competitors by providing a wide variety of specialized metabolites (SMs). However, little is known about which SMs function as so called “food signals” to trigger the development process. The IJs develop into adult, self-fertilizing hermaphrodites in a process called recovery, while feeding on cadaver and bacterial biomass. Heterorhabditis and Steinernema proceed to breed until nutrients are exhausted. Next generation IJs (NG-IJs) develop and leave the cadaver to search for another insect prey. Photorhabdus and Xenorhabdus can be cultivated in defined medium under laboratory conditions. By placing IJs on a plate containing their respective bacterial symbiont, the complete life cycle of the nematodes can be observed in vitro. The in vitro nematode bioassay was used as a tool to investigate the development of the nematode. The aim of this study was to find the food signals responsible for nematode development. Different Photorhabdus deletion strains unable to produce one or several SMs were co-cultivated with nematodes in the nematode bioassay. Subsequently, two aspects of the life cycle were investigated: recovery and NG-IJ development. As isopropyl stilbene (IPS) is postulated to function as a food signal to support nematode recovery, it was used as a starting point for investigations. This study was focused on the biosynthetic pathway of IPS, including intermediates, side products and derivatives to investigate which one is in fact responsible for supporting nematode development. The biosynthesis of IPS requires two precursors, phenylalanine and leucine (Figure 5). The first topic was focused on the phenylalanine derived pathway. Photorhabdus laumondii deletion mutants, defective in intermediate steps of this pathway, were created. The deletion of the genes coding for the phenylalanine ammonium lyase (stlA), converting phenylalanine into cinnamic acid (CA), the coenzyme A (CoA) ligase (stlB) and the operon coding for a ketosynthase and aromatase (stlCDE), were used. These strains were used for nematode bioassay including complementation of mutant phenotypes by feeding experiments. Recovery of nematodes grown on the deletion strains was always lower than recovery of nematodes grown on wild type bacteria. Feeding IPS to a deletion strain did not restore wild type level nematode recovery, thus IPS cannot be the food signal. Instead, the food signal must be another compound derived from this part of biosynthetic pathway. Lumiquinone and 2,5-dihydrostilbene are suggested to function as food signals and need to be investigated in future work. The second part of this study was focused on the leucine derived pathway, which involved the Bkd complex forming the iso-branched part of IPS. A deletion of bkd was created and phenotypically analysed, subsequently performed with the nematode bioassay. Not only IPS but also other branched SMs, like photopyrones and phurealipids are synthetised by the Bkd complex. Deletions strains defective in producing photopyrones and phurealipids were also performed in nematode bioassays to investigate effects of these SMs individually. Branched SMs did not have an impact on nematode development, but nematodes grown on the ΔbkdABC strain showed a reduced nematode recovery and almost diminished NG-IJs development. As the Bkd complex also produces branched chain fatty acids (BCFAs), feeding experiments were performed with lipid extracts of wild type and mutant strain. All lipid extracts improved recovery, but only wild type lipids could complement NG-IJ development. This strongly indicates that BCFAs play an important role in NG-IJ development, which needs to be proven with purified BCFA feeding. This is an interesting finding, which could improve nematode production for biocontrol agent usage. The role of IPS derived to epoxy stilbene (EPS) for nematode development, was another focus in the nematode life cycle. Recently it was demonstrated that EPS does not support nematode development. However, EPS forms adducts with amino acids. In my thesis, novel adducts containing the amino acid phenylalanine or a tetrapeptide were characterized. Another adduct, most likely being an EPS dimer, was also characterized. The biological role of such adducts was discussed to be potentially important for insect weakening and the structure of the novel compounds need to be structure elucidated and tested for bioactivity.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Helena Vural
URN:urn:nbn:de:hebis:30:3-617729
DOI:https://doi.org/10.21248/gups.61772
Place of publication:Frankfurt am Main
Referee:Helge Björn BodeORCiDGND, Ralf Heermann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/07/14
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/06/29
Release Date:2021/08/09
Page Number:97
HeBIS-PPN:484030825
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht