Optimisation and development of NMR spectroscopic methods for the investigation of biomolecular dynamics

  • Fokus meiner Doktorarbeit ist die Anwendung und Entwicklung NMR-spektroskopischer Methoden zur Charakterisierung zeitabhängiger Strukturänderungen von Biomolekülen – von lokalen dynamischen Veränderungen bis zur vollständigen Rückfaltung von Proteinen – und fasst die Ergebnisse meiner drei wichtigsten PhD-Projekte zusammen. In meinem ersten Projekt habe ich die Leistung eines Temperatursprung-Probenkopfs – mit dem Proben mit hoher Salzkonzentration schnell erwärmt werden können – mithilfe einer Hochfrequenzspule technisch optimiert. Die optimierten Radiofrequenz-Bestrahlungsparameter, Lösungsmittel-bedingungen und der reduzierte Arbeitszyklus führten zu einem Temperatursprung von 20 °C in 400 ms. Ich habe eine Cystein-freie Mutante von Barstar hergestellt, die nach Zugabe von Harnstoff bei 0 °C kalt denaturiert werden kann, während sie ihren gefalteten Zustand bei 30 °C hält. Dadurch wurde auch ermöglicht, dass der Rückfaltungsprozess hunderte Male ohne Abbau oder Aggregation wiederholt werden kann. Die Kombination von reversibler Rückfaltung und rascher Temperaturänderung des kalt denaturierten Barstars ermöglichte die Entwicklung eines neuen kinetischen Experiments, bei dem der Rückfaltungsprozess von Barstar mit einem zweidimensionalen Echtzeit-NMR in hoher Zeitauflösung untersucht wird. Die vollständige Rückgratresonanzzuweisung wurde sowohl für den gefalteten als auch für den kalt denaturierten Zustand von Barstar durchgeführt und ergab, dass in der denaturierten Form beide Prolin-Reste einen gemischten Konformationszustand aufweisen. Dabei befindet sich die Tyr47-Pro48-Amidbindung im ungefalteten Zustand hauptsächlich in trans-, während im gefalteten Zustand in der seltenen cis-Konformation. Das neue hochauflösende kinetische Experiment zeigte, dass die Rückfaltung von Barstar durch die trans-cis-Isomerisierung der Tyr47-Pro48-Amidbindung verlangsamt wird, was sowohl die Sekundärstruktur als auch die Bildung der Tertiärstruktur beeinflusst. Basierend auf diesen Ergebnissen konnte ich einen plausiblen Faltungsmechanismus für den langsamen Faltungsweg von kalt denaturiertem Barstar skizzieren. Durch Änderung der Zeitparameter des Heizungszyklus wurde erreicht, dass die Tyr47-Pro48-Amidbindung im ungefalteten Zustand in der cis-Konformation bleibt und daher der schnelle Faltungsweg dominant wird. Das Starten des Magnetisierungstransfers vor der Temperaturänderung ermöglichte die Aufzeichnung eines Spektrums, das den entfalteten Zustand mit dem gefalteten Zustand korreliert. Dieses Spektrum ermöglichte quantitative Analysen des schnellen Faltungsweges und lieferte sogar indirekte Hinweise auf einen Zwischenzustand. Diese Methode aus Kombination von schnellem Temperatursprung und Kaltdenaturierung zeigt ein hohes Potenzial, Proteinfaltung auf atomarer Ebene experimentell zu untersuchen und ein tieferes Verständnis verschiedener Faltungswege zu erlangen. In meinem zweiten Projekt – das Teil einer interdisziplinären Forschung war – konzentrierte ich mich auf die NMR-spektroskopische Charakterisierung von Nukleinsäuren, die mit einer photolabilen Schutzgruppe modifiziert wurden. Zuerst wurde mithilfe homonuklearer Korrelationsexperimente eine vollständige Protonresonanzzuweisung erreicht. Danach wurde die relative Konfiguration der photolabilen Schutzgruppen bestimmt basierend auf einer dreidimensionalen Modellstruktur und spezifischer NOE-Korrelationen. Des Weiteren wurde ein Strukturmodell unter Verwendung von NOE-Einschränkungen berechnet. Dieses Strukturmodell zeigte eine eingeschränkte Rotation um die CN-Bindung zwischen dem Käfig und der Nukleobase. Das Modell zeigte auch, dass der Käfig in der Hauptrille positioniert ist und nicht in das Lösungsmittel herausklappt. Im Vergleich zu einem zuvor charakterisierten NPE-Käfig führte die erhöhte Größe zu einer weiteren Senkung des Schmelzpunkts, zeigte jedoch einen geringeren Schmelzpunktunterschied zwischen der S- und der R-Konfiguration des Käfigs, wobei die S-Konfiguration zu einer größeren Reduktion des Schmelzpunktes führt. Dieser Trend wurde weiter untersucht und durch ein Screening unterstützt. Durch selektive Wasserinversions-Rückgewinnungsexperimente konnte ich auch zeigen, dass der Käfig die lokale Stabilität nur bis zu einer Entfernung von zwei benachbarten Basenpaaren von der Modifikationsstelle verringert. Die NOE-Daten dienten auch als guter Bezugspunkt, um die Qualität molekulardynamischer Simulationen zu testen, mit denen zusätzliche Käfigdesigns untersucht wurden. Die Kombination aus Synthese, NMR-Spektroskopie und MD-Simulationen ermöglichte bis jetzt die detaillierteste Untersuchung des Effekts vom Einbau eines einzelnen Käfigs zur Destabilisierung der DNA-Sekundärstruktur. Dabei wurden Einschränkungen des möglichen Designs aufgedeckt, aber auch die Entwicklung einer neuen, effizienteren Struktur ermöglicht. Mein drittes Projekt konzentrierte sich auf die Charakterisierung eines RNA-Modellsystems. NMR-spektroskopische Daten von kleinen RNA-Modellsystemen – wie NOE, skalare Kopplungen, kreuzkorrelierte Relaxationsraten und RDC – sind eine unschätzbare Referenz für MD-Simulationen, obwohl die Menge der verfügbaren Literaturdaten – bis jetzt – sehr begrenzt ist. ...

Download full text files

Export metadata

Metadaten
Author:György Pintér
URN:urn:nbn:de:hebis:30:3-592376
Referee:Harald SchwalbeORCiDGND, Clemens GlaubitzORCiDGND
Advisor:Harald Schwalbe
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/03/29
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/03/24
Release Date:2021/05/06
Page Number:171
HeBIS-PPN:47879553X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht