Generation of a novel mouse model for the study of autoimmune liver disease overlap syndrome

  • The three major autoimmune diseases (ADs) of the liver are primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and autoimmune hepatitis (AIH). All of those diseases show an aggressive immune reaction resulting in the destruction of liver tissue and finally to the development of hepatic fibrosis. PSC is an autoimmune mediated disease of unknown etiology. It is characterized by inflammation of intra- and extrahepatic bile ducts. The progressive destruction of the bile ducts can lead to liver cirrhosis and finally to liver failure. Clinical signs for PSC are increased alkaline phosphatase (AP) and gamma glutamyltransferase (GGT) levels, presence of perinuclear anti-neutrophil cytoplasmic antibodies (pANCA) and bile ducts with characteristic strictures and dilations of the biliary tree as well as onion skin fibrosis surrounding the damaged bile ducts. Currently, there is no established treatment for PSC patients. The administration of ursodeoxycholic acid (UDCA) is being use as a therapy. However, it merely serves a symptomatic treatment to reduce serum AP and GGT as well as the formation of gallstones. In the advanced stage of PSC, liver transplantation is the last therapeutic option. Mdr2-/- mice are an excepted mouse model for human PSC. Such mice show lymphocytes infiltration into the liver, bile duct lesions, as well as the presence of the typical onion skin-like pericholangitis and periductal fibrosis. AIH is a rare chronic autoimmune disease of the liver that results from the loss of self-tolerance to hepatocytes and leads to destruction of the hepatic parenchyma with the onset of cirrhosis. Clinical signs for AIH are elevated alanine aminotransferase (ALT) and aspartate transaminase (AST) levels, hypergammaglobulinemia and different types of autoantibodies. In addition, interphase hepatitis with lymphocytic and plasmacellular infiltrates in the periportal field are characteristic for AIH. Two different subtypes of AIH exist and depending on their autoantibody profile they can be distinguished into AIH type 1 which is characterized by the presence of anti-nuclear (ANA) and/or anti-smooth muscular (SMA) autoantibodies, and AIH type 2 showing liver/kidney microsomal autoantibodies (LKM-1). LKM-1 recognizes the major autoantigen, the 2D6 isoform of the cytochrome P450 enzyme family (CYP2D6). One mouse model for AIH is the CYP2D6 model in which the injection of Ad-2D6 leads to a breakdown of the immune tolerance by the destruction of hepatocytes. There are some patients with autoimmune diseases of the liver who have both cholestatic and hepatic liver enzymes and histological features suggestive of two different liver diseases. These patients are diagnosed with an overlap syndrome (OS). In my thesis I generated an animal model with characteristics of both diseases, which would mimic features of human PSC-AIH OS. Mdr2-/- mice which spontaneously develop PSC were infected with Ad-2D6 to trigger the autoimmune-driven hepatic injury. Pathogenesis of PSC-AIH OS mice was compared to mice with solitary PSC or AIH. Naïve FVB wild type mice have been used as healthy controls. The characterization of the PSC-AIH OS model was done by analyzing serological parameters like ALT, AP, different antibodies like pANCA, LKM-1 like CYP2D6 and total IgG. Additionally, fibrosis and cholangitis were analyzed by immunohistochemistry and Western blotting. Moreover, cellular infiltrations of CD4+ and CD8+ T cells, dendritic cells (DCs), monocytes/macrophages and neutrophils were determined with immunohistochemistry. Finally, the overall immune balance in the liver and the frequency of CYP specific T cells were analyzed via flow cytometry. Our new mouse model indeed represents the characteristics of both PSC and AIH and mimics features of the human PSC-AIH OS. It allows studying the development of a PSC-AIH OS and how the two overlapping diseases are influencing one another. In a second approach I wanted to induce CYP2D6-specific tolerance in AIH mice. Therefore, I tried four different approaches, namely intranasal peptide administration, injection of tolerogenic DCs, antigen-coupled splenocytes, and Ag-coupled nanoparticles (NP) and evaluated their potential to induce CYP2D6 specific Treg with the capacity to prevent AIH in mice. Unfortunately, the intranasal peptide administration and also the injection of tolerogenic DCs did not increase the amount of CYP2D6 specific Treg which would lead to a reduction of the frequency of inflammatory T cells. Surprisingly, the injection of antigen-coupled splenocytes showed the opposite effect characterized by a very strong cytokine secretion in the tolerized mice. The use of NPs led to an increase in CYP2D6 specific Treg as well as in decrease in the frequency of inflammatory T cells and finally has the potential for a therapeutic approach. In summary, the generated PSC-AIH OS model represents many clinical signs which can also be observed in PSC-AIH OS patients. This model can be used to study the etiology of this overlap syndrome and further to test potential therapeutic approaches. The different immune tolerance induction pathways which I tried in the AIH model show that NPs have to potential to induce immune tolerance but this approach has to be refined and the outcome has to be characterized in more detail.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sina Fuchs
URN:urn:nbn:de:hebis:30:3-509489
Place of publication:Frankfurt am Main
Referee:Robert FürstORCiDGND, Urs ChristenORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/08/19
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/08/15
Release Date:2019/08/22
Page Number:202
HeBIS-PPN:452287480
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht