Molecular targeting of autophagy in glioblastoma

  • Autophagy, meaning “self-eating”, is an important cellular waste disposal mechanism. Thereby, damaged proteins, lipids and organelles are enclosed by autophagosomes and subsequently transported to the lysosomes for degradation into basic, cellular building blocks. Under basal conditions autophagy prevents the accumulation of defective and harmful material and generally promotes cell survival. However, several studies reported that hyperactivated autophagy, e.g. during developmental processes in lower eukaryotes, or during chemotherapeutic treatment of cancer cells, can also trigger cell death. In recent years, autophagic cell death (ACD) has been considered as an alternative cell death pathway for tumor therapy, especially for solid tumors with high apoptosis resistance such as glioblastoma. Glioblastoma (GBM) is a very aggressive, malignant primary brain tumor with a median survival of ~ 15 months despite surgery and chemoradiotherapy. Accordingly, there is a great interest in improving GBM therapy through alternative cell death mechanisms. Interestingly, it has been shown that various substances, e.g. AT 101, cannabinoids and the combination of imipramine and ticlopidine (IM+TIC), induce ACD in GBM cells. The aim of this project was to identify the underlying mechanisms of stress- and drug-induced ACD and its therapeutic potential for glioblastoma treatment. For detailed investigation of ACD, a CRISPR/Cas9-based approach was used to generate ATG5 and ATG7 knockouts as genetic models of autophagy deficiency. In a previous study of our lab it was demonstrated that administration of AT 101 triggers ACD in glioblastoma cells, which was associated with early mitochondrial fragmentation but no signs of apoptosis. Since mitochondrial fragmentation often precedes mitophagy, the first part of this thesis explored the potential role of mitophagy in AT 101-induced cell death. ATG5-depleted cells confirmed that AT 101 induces ACD. In addition, treatment with AT 101 resulted in a pronounced mitochondrial depolarization, which was at least partly caused by the opening of the mitochondrial permeability pore. Global proteome analysis of AT 101-treated GBM cells revealed a robust decrease in mitochondrial protein clusters as well as a strong increase in the enzyme heme oxygenase-1 (HMOX1). Subsequent experiments for detailed investigation of mitophagy following AT 101 treatment (western blot, flow cytometric MTG and mt-mKeima, qRT-PCR of mitochondrial vs nuclear DNA) consistently indicated strong mitophagy induction by AT 101, which could be reduced by genetic or pharmacological inhibition of autophagy. Furthermore, siRNA-mediated knockdown experiments revealed that the selective mitophagy receptors BNIP3 and BNIP3L and the HMOX1 enzyme play an essential role in AT 101-induced mitophagy and subsequent cell death. Taken together, these data demonstrate that AT 101-induced mitochondrial dysfunction and HMOX1 induction synergize to promote excessive mitophagy with a lethal outcome in glioma cells. The second part of this thesis focused on the identification of new substances that cause ACD and the investigation of the underlying cell death pathways. Using a cell death screen of the ENZO Screen-Well™ autophagy library in MZ-54 wild-type vs ATG5 and ATG7-depleted cells, loperamide, pimozide, and STF-62247 were identified as ACD-inducing agents. The increase of the autophagic flux and the induction of ACD by these substances was confirmed by using different ATG5 and ATG7 knockout cell lines and the already established positive control IM+TIC. In contrast to AT 101, IM+TIC, STF-62247, loperamide and pimozide produced neither mitochondrial dysfunction nor mitophagy. Interestingly, it has been described that imipramine, loperamide and pimozide inhibit the lysosomal enzyme acid sphingomyelinase, which is associated with impaired lipid transport. Global proteome analysis and cholesterol staining confirmed that all four substances, but especially loperamide and pimozide, inhibit cellular lipid transport, leading to massive lipid accumulation in the lysosomes. In the further course of the experiments, the connection between defective lipid transport and autophagy was investigated in more detail. On the one hand, the defective lipid transport contributed to the induction of autophagy, on the other hand the massive accumulation of lipids led to lysosomal membrane damage, inhibition of lysosomal degradation at later time points and finally to a lysosomal cell death. Remarkably, it has been shown that hyperactivated autophagy by IM+TIC, loperamide and pimozide massively promotes lysosomal membrane damage. This result highlights the difficulties of a clear distinction between autophagic and lysosomal cell death. In summary, two new signaling pathways that induce autophagic cell death in GBM cells and may be relevant for glioblastoma therapy were investigated in this study.
Metadaten
Author:Nina Michelle Meyer
URN:urn:nbn:de:hebis:30:3-508471
Place of publication:Frankfurt am Main
Referee:Heinz D. OsiewaczORCiDGND, Donat KögelORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/07/23
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/07/16
Release Date:2019/08/15
Page Number:206
HeBIS-PPN:452090288
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht