Method development and application in computational systems biology: the concept of Manatee invariants to study the TNFR1 signaling pathway in the Petri net formalism

  • Biologische Signalwege bilden komplexe Netzwerke aus, um die Zellantwort sensibel regulieren zu können. Systembiologische Ansätze werden eingesetzt, um biologische Systeme anhand von Computer-gestützten Modellen zu untersuchen. Ein mathematisches Modell erlaubt, neben der logischen Erfassung der Regulation des biologischen Systems, die systemweite Simulation des dynamischen Verhaltens und Analyse der Robustheit und Anfälligkeit. Der TNFR1-vermittelte Signalweg reguliert essenzielle Zellvorgänge wie Entzündungsantworten, Proliferation und Zelltod. TNFR1 wird von dem Zytokin TNF-α stimuliert und fördert daraufhin die Bildung verschiedener makromolekularer Komplexe, welche unterschiedliche Zellantworten einleiten, von der Aktivierung des Transkriptionsfaktors NF-κB, welcher die Expression von proliferationsfördernden Genen reguliert, bis zu zwei Formen des Zelltods, der Apoptose und der Nekroptose. Die Regulation der verschiedenen Zellantworten wird auch als molekularer Schalter bezeichnet. Die exakten molekularen Vorgänge, welche die Zellantwort modulieren, sind noch nicht vollständig entschlüsselt. Eine Fehlregulation des Signalwegs kann chronische Entzündungen hervorrufen oder die Entstehung von Tumoren fördern. In dieser Thesis haben wir die neuesten Erkenntnisse der Forschung des TNFR1-Signalwegs anhand von umfangreichen Interaktionsdaten aus der Literatur erstmals in einem Petrinetz-Modell erfasst und analysiert. Das manuell kuratierte Modell umfasst die sequenziellen Prozesse der NF-κB-Aktivierung, Apoptose und Nekroptose und berücksichtigt den Einfluss posttranslationaler Modifikationen. Weiterhin wurden Analysemethoden für Signalwegs-Modelle entwickelt, welche die spezifischen Anforderungen dieser biologischen Systeme berücksichtigen und eine biologisch motivierte Netzwerkanalyse ermöglichen. Die Manatee-Invarianten identifizieren Signalflüsse im Gleichgewichtszustand in Modellen, die Zyklen aufweisen, und werden als Linearkombination von Transitions-Invarianten gebildet. Diese Signalflüsse erfassen idealerweise einen Prozess von der Rezeptorstimulation zur Zellantwort in einem Modell eines Signalwegs. Die Bestimmung aller möglichen Signalflüsse in Modellen von Signalwegen ist eine notwendige Voraussetzung für weitere biologisch motivierte Analysen, wie die in silico-Knockout Analyse. Wir haben ebenfalls ein neues Konzept zur Untersuchung von in silico-Knockouts vorgestellt. Die Effekte der in silico-Knockouts auf einzelne Komplexe und Prozesse des Signalwegs werden in der in silico-Knockout-Matrix repräsentiert. Wir haben die Software-Anwendung isiKnock entwickelt, welche beide Konzepte kombiniert und eine systematische Knockout-Analyse von Petrinetz-Modellen unterstützt. Das Petrinetz-Modell des TNFR1-Signalwegs wurde auf seine elementaren Eigenschaften geprüft und die etablierten Analysen wie Platz-Invarianten und Transitions-Invarianten durchgeführt. Hierbei konnten die Transitions-Invarianten nicht in allen Fällen komplette biologische Signalflüsse beschreiben. Wir haben ebenfalls die neu vorgestellten Methoden auf das Petrinetz-Modell angewandt. Anhand der Manatee-Invarianten konnten wir die zusammenhängenden Signalflüsse identifizieren und nach ihrem biologischen Ausgang klassifizieren sowie die Auswirkungen der Rückkopplungen untersuchen. Wir konnten zeigen, dass die survival-Antwort durch die Aktivierung von NF-κB am häufigsten auftritt, danach die Apoptose, gefolgt von der Nekroptose. Die alternativen Signalflüsse in Form der Manatee-Invarianten spiegeln die Robustheit des biologischen Systems wider. Wir führten eine ausgiebige in silico-Knockout-Analyse basierend auf den Manatee-Invarianten durch, um die Proteine des Signalwegs nach ihrem Einfluss einzustufen und zu gruppieren. Die Proteine des Komplex I wiesen hierbei den größten Einfluss auf, angeführt von der Rezeptorstimulation und RIP1. Wir betrachteten und diskutierten die Regulation des molekularen Schalters anhand der Knockout-Analyse von selektierten Proteinen und deren Auswirkung auf wichtige Komplexe im Modell. Wir identifizierten die Ubiquitinierung in Komplex I sowie die NF-κB-abhängige Genexpression als die wichtigen Kontrollpunkte des TNFR1-Signalwegs. In Komplex II ist die Regulation der Aktivierung der Caspase-Aktivität entscheidend. Die umfangreiche Netzwerkanalyse basierend auf Manatee-Invarianten und systematischer in silico-Knockout-Analyse verifizierte das Petrinetz-Modell und erlaubte die Untersuchung der Robustheit und Anfälligkeit des Systems. Die neu entwickelten Methoden ermöglichen eine fundierte, biologisch relevante Untersuchung von in silico-Modellen von Signalwegen. Der systembiologische Ansatz unterstützt die Aufklärung der Regulation und Funktion des verflochtenen Netzwerks des TNFR1-Signalwegs.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Leonie Katharina AmsteinORCiDGND
URN:urn:nbn:de:hebis:30:3-502846
Place of publication:Frankfurt am Main
Referee:Ina KochORCiD, Simone FuldaORCiDGND, Falk Schreiber
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/05/15
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/05/06
Release Date:2019/05/16
Page Number:XIX, 173
HeBIS-PPN:448727625
Institutes:Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht