Explorations of turtle cortex function through molecular, optogenetic and electrophysiological techniques

  • The objectives of this thesis were to understand how distinct classes of cell types interact to shape oscillatory activity in cortical circuits of the turtle. We chose the turtle cortex as a model system for cortical computations for two reasons. One is that the phylogenetic position of turtles makes their cortex functionally and anatomically particularly interesting. The second is that reptilian brains present several unique experimental advantages. Turtles have a three-layered cortex that forms the dorsalmost part of their pallium and receives direct input from visual thalamus. Thus turtle cortex, while sharing several features with mammalian cortices, constitutes a simpler system for studying cortical computations and dynamics. Freshwater turtles are semiaquatic species, that dive for hours and hibernate for months without breathing. Their brains are adapted to these behaviors so that they can operate under severe anoxia. This property allows for ex vivo wholebrain and whole-cortex (”cortical slab”) preparations in vitro, enabling the use of many sophisticated techniques for monitoring activity in parallel. I thus set out to utilize the advantages of our model system, by using optogenetic methods to reliably evoke oscillations in an ex vivo whole-cortex preparation while observing activity in parallel with planar multi-electrode arrays (MEA), linear silicon depth-electrodes and patch-clamp recording techniques. This required several technical aspects to be solved. Prior work in turtle cortex (Prechtl, 1994; Prechtl et al., 1997; Senseman and Robbins, 2002) indicated that visual stimuli evoke complex activity patterns (e. g. wave patterns) in dorsal cortex. The goal was to examine these dynamics in detail and to provide mechanistic explanations for them whenever possible. The recent advent of optogenetics, the development of microelectrode arrays, and the possibility to combine these techniques with classical electrophysiological approaches on a resistant, accessible and stable preparation led me to explore a number of technical avenues. First I had to establish gene delivery methods in reptiles. I settled on recombinant viruses, and show results from several serotypes of adeno-associated virus (AAV), i lentivirus and rabies virus. I report successful gene expression of genes of interest with several subtypes of AAV, including the commonly used AAV2/1 and AAV2/5 serotypes. Second I had to find promoters enabling global and cell-type specific gene expression in reptiles. Ubiquitous high-yield promoters such as CAG/CB7 or CMV drive high levels of expression in turtles; cell-type specific promoters such as hSyn (expression limited to neurons) and CaMKIIa (expression limited exclusively o mostly to excitatory neurons) appear similarly biased in turtles. Other cell-type specific promoters reported in the literature (fNPY, fPV, fSST) failed to express in turtles. A second major aspect of my work focused on electrophysiological recordings using microelectrode arrays and the interpretation of extracellular signals recorded from cortex in ex vivo preparations. We observed that spike signals produced by pyramidal and inhibitory neurons were very often followed by a slower potential. We identified these slower potentials as reflections of synaptic currents, and thus of the axonal projections of the neurons, at least within the deep layers of cortex. This also resulted in a means to classify neurons as excitatory or inhibitory with much higher reliability than classical methods (e. g. spike width). The final aspect of my work concerns the use of optogenetics to dissect the mechanisms of cortical oscillations and wave propagation. I show that oscillations can be induced by light in turtle cortex after transfection with AAV2/1 carrying the gene for channelrhodopsin 2 (ChR2). By using the CaMKIIa promoter, ChR2 induced currents are limited to LII/III excitatory cells; we can therefore control excitatory drive to cortical networks. If this drive is strong enough, layer III inhibitory interneurons are recruited and fire in a concerted fashion, silencing the excitatory population. The visually evoked 20 Hz oscillations observed in chronically recorded animals (Schneider, 2015) or in anaesthetized animals (Fournier et al., in press) thus appear to result from a feedback loop between E and I cells within layers II & III. Details of these interactions are being investigated but - layer I interneurons, by contrast, do not seem to be involved. By pulsing light I could control the frequency of the oscillations within a range of several Hz around the natural oscillation frequency. Above this range, cortex could only follow the stimulus at a fraction (1/2, 1/3,...) of the light pulse frequency. Using a digital micromirror device, I limited activation of the cortical networks spatially, enabling the study of wave propagation in this system. Reptilian cortex offers a relatively simple model system for a reductionist and comparative strategy on understanding cortical computations and dynamics. Turtle dorsal cortex could thus give fundamental insights to the primordial organization tional, computational and functional principles of cortical networks. These insights are relevant to our understanding of mammalian brains and may prove valuable to decipher fundamental questions of modern neuroscience.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lorenz Pammer
URN:urn:nbn:de:hebis:30:3-491250
Place of publication:Frankfurt am Main
Referee:Gilles Laurent, Manfred KösslORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/02/15
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/10/24
Release Date:2019/02/21
Issue:[Heft 1 =] Berühren. Relationen des Taktilen in Literatur, Philosophie und Theater
Page Number:xii, 169
HeBIS-PPN:445497742
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht