cGMP imaging in brain slices reveals brain region-specific activity of NO-sensitive Guanylyl Cyclases (NO-GCs) and NO-GC stimulators

  • Impaired NO-cGMP signaling has been linked to several neurological disorders. NO-sensitive guanylyl cyclase (NO-GC), of which two isoforms—NO-GC1 and NO-GC2—are known, represents a promising drug target to increase cGMP in the brain. Drug-like small molecules have been discovered that work synergistically with NO to stimulate NO-GC activity. However, the effects of NO-GC stimulators in the brain are not well understood. In the present study, we used Förster/fluorescence resonance energy transfer (FRET)-based real-time imaging of cGMP in acute brain slices and primary neurons of cGMP sensor mice to comparatively assess the activity of two structurally different NO-GC stimulators, IWP-051 and BAY 41-2272, in the cerebellum, striatum and hippocampus. BAY 41-2272 potentiated an elevation of cGMP induced by the NO donor DEA/NO in all tested brain regions. Interestingly, IWP-051 potentiated DEA/NO-induced cGMP increases in the cerebellum and striatum, but not in the hippocampal CA1 area or primary hippocampal neurons. The brain-region-selective activity of IWP-051 suggested that it might act in a NO-GC isoform-selective manner. Results of mRNA in situ hybridization indicated that the cerebellum and striatum express NO-GC1 and NO-GC2, while the hippocampal CA1 area expresses mainly NO-GC2. IWP-051-potentiated DEA/NO-induced cGMP signals in the striatum of NO-GC2 knockout mice but was ineffective in the striatum of NO-GC1 knockout mice. These results indicate that IWP-051 preferentially stimulates NO-GC1 signaling in brain slices. Interestingly, no evidence for an isoform-specific effect of IWP-051 was observed when the cGMP-forming activity of whole brain homogenates was measured. This apparent discrepancy suggests that the method and conditions of cGMP measurement can influence results with NO-GC stimulators. Nevertheless, it is clear that NO-GC stimulators enhance cGMP signaling in the brain and should be further developed for the treatment of neurological diseases.

Download full text files

Export metadata

Metadaten
Author:Stefanie Peters, Michael Paolillo, Evanthia Mergia, Doris Koesling, Lea Kennel, Achim SchmidtkoORCiDGND, Michael Russwurm, Robert Feil
URN:urn:nbn:de:hebis:30:3-484879
DOI:https://doi.org/10.3390/ijms19082313
ISSN:1422-0067
ISSN:1661-6596
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/30087260
Parent Title (English):International journal of molecular sciences
Publisher:Molecular Diversity Preservation International
Place of publication:Basel
Document Type:Article
Language:English
Year of Completion:2018
Date of first Publication:2018/08/07
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2018/12/13
Tag:Cyclic GMP; FRET imaging; NO-GC stimulators; Purkinje cells; cerebellar granule cells; guanylyl cyclase; hippocampal neurons; nitric oxide; striatum; transgenic mice
Volume:19
Issue:8, Art. 2313
Page Number:20
First Page:1
Last Page:20
Note:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
HeBIS-PPN:446236004
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0