Epigenetic characterization of skeletal muscle and heart tissue of the turquoise killifish "Nothobranchius furzeri", a novel short-lived animal model for aging studies

  • This dissertation aimed to shed light on changes of the epigenetic landscape in heart and skeletal muscle tissue of the turquoise Killifish N. furzeri, a novel, short-lived animal model for aging research. The following results could be obtained: 1. A global trend towards closed chromatin conformation could be observed; histone markers for H3K27me3, H3K9me3 and H4K20me3 accumulated in skeletal muscle tissue from old N. furzeri. Markers for open chromatin conformation such as H3K4me3, H3K9ac and H4K16ac decreased in old skeletal muscle tissue. In old hearts from N. furzeri an accumulation of H3K27me3 could be detected while H3K9ac was found to increase with age as well. mRNA expression levels of methylating enzymes were higher in skeletal muscle tissue from old N. furzeri when compared to expression levels in skeletal muscle tissue from young N. furzeri. 2. The shift of epigenetic pattern was accompanied by a change of gene expression. Via mRNA sequencing in collaboration with the MPI, Bad Nauheim it could be shown that genes associated with cell cycle and DNA repair were lower expressed in skeletal muscle tissue from old N. furzeri than in tissue from young N. furzeri. Genes, associated with inflammatory signaling and glycolysis, displayed increased mRNA levels in skeletal muscle tissue from old N. furzeri. These results could be confirmed by Western blot and qRT-PCR analyses. 3. Markers for DNA damage and senescence increased in skeletal muscle tissue from old N. furzeri. 4. Cells derived from young and old N. furzeri skeletal muscle could be isolated and cultured for many passages. These cells were a mix of different cell types with properties and features of the native tissue. They could be used for treatment with drugs and/small compounds modulating the epigenetic landscape via specific interference with methylating enzymes. 5. DNA methylation and hydroxy-methylation were found to go in different directions in skeletal muscle and heart tissue from N. furzeri: while increasing in skeletal muscle tissue, a both DNA modifications declined in heart tissue with age. 6. In the heart of N. furzeri microRNA expression changes with age were assed with sequencing in collaboration with the FLI, Jena. It could be demonstrated that miRNA expression is age-dependent. Particular focus was on miR-29 and its target genes: miR-29 was highly upregulated in heart and skeletal muscle tissue, while target genes such as collagens and dnmts were reduced with age in the heart of N. furzeri. 7. Cardiac function remained stable with age and no accumulation of collagens could be found when comparing hearts of young and old N. furzeri despite the increase of markers for oxidative stress. 8. Cell culture experiments with human cardiac fibroblasts revealed that miR-29 is upregulated with increasing age of the donor. In addition to that, it could be shown that miR-29 is positively regulated by oxidative stress. 9. A zebrafish mutant with modified expression of miR-29 that was created in collaboration with the SNS, Pisa, presented a severe hypoxic phenotype and an altered mRNA expression profile compared to wild type control zebrafish. Cardiac dysfunction and hypertrophy were observed as well as an increase in DNA methylation and collagens. Taken together, it could be shown that the aging process in skeletal muscle and heart tissue from N. furzeri leads to a series of changes on epigenetic levels. It remains to be elucidated whether these changes are result or cause for further changes of mRNA expression, protein levels and pathophysiology, yet the N. furzeri represents a promising research model for further aging studies.

Download full text files

Export metadata

Metadaten
Author:Johanna Heid
URN:urn:nbn:de:hebis:30:3-479401
Place of publication:Frankfurt am Main
Referee:Carlo Gaetano, Heinz D. OsiewaczORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/10/16
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/10/12
Release Date:2018/10/19
Page Number:135
HeBIS-PPN:438435680
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht