On the effects of northern hemisphere cooling on atmospheric circulation patterns in the Eastern Mediterranean: The 8.2 kyr B.P. climatic event at Tenaghi Philippon

  • Despite mounting evidence of the anthropogenic influence on the Earth's climate, underlying mechanisms of climate change often remain elusive. The investigation of periods of rapid climate change from geological archives may provide crucial information about magnitude, duration, teleconnections of and regional responses to global and hemispheric scale climate perturbations. Thus, paleoclimate reconstructions may help in mitigating and adapting to the challenges of the coming decades. The '8.2 kyr B.P. climatic event' has previously been proposed as a possible analogue for the future climatic scenario of a reduced Atlantic Meridional Overturning Circulation (AMOC). The catastrophic drainage of the Laurentide meltwater lakes through the Hudson Bay and into the Labrador Sea, that occurred ca. 8.47 kyr B.P., caused the slowdown of the AMOC around 8.2 kyr B.P.. Subsequently, reduced heat transfer towards Europe triggered a substantial decline in (winter) temperature and pronounced changes in atmospheric circulation patterns in many regions of the northern hemisphere, especially the North Atlantic realm and Europe. Among the regions affected by the 8.2 kyr B.P. climatic event, the Eastern Mediterranean region is of particular interest for both past and future climate developments. Traditionally characterized as a region highly sensitive to variations in the climate systems of the high and low latitudes, abrupt climate changes have the potential to strongly alter atmospheric circulation patterns and thus precipitation distribution in the region that may have severe socioeconomical consequences. The analysis of stable hydrogen (δD) and oxygen isotopes (δ18O) in precipitation is an excellent tool to trace changes in atmospheric circulation. Here, we present a comparative study of δD and δ18O in precipitation from the Eastern Mediterranean region both in a present day scenario and during the 8.2 kyr B.P. climatic event. We analyze the influences of topography, air mass trajectory, climate and seasonality among others the stable isotopic compositions of meteoric waters from the Central Anatolian Plateau (CAP), Turkey, in order to create a first-order template which may serve as a reference against which paleoenvironmental proxy data may be more accurately interpreted and tested. Further, we employ a multiproxy approach on the early Holocene peat deposits of the classical site of Tenaghi Philippon (TP), NE Greece, to investigate paleoenvironmental responses to northern hemisphere cooling during the 8.2 kyr B.P. climatic event and aim to determine changes atmospheric circulation from δD of leaf wax n-alkanes (δDwax). Based on δD and δ18O data from more than 480 surface water samples from the CAP, we characterize moisture sources affecting the net isotopic budget of precipitation, manifesting in a systematic north-south difference in near-sea level moisture compositions. Rainout, induced by the major orographic barriers of the plateau, the Pontic Mountains to the north and the Taurus Mountains to the south, strongly shape the modern patterns of δD and δ18O. Stable isotope data from the semi-arid plateau interior provide clear evidence for an evaporitic regime that drastically affects surface water compositions. Strong evaporative enrichment contrasts rainfall patterns along the plateau margins, in part obfuscating the effects of topography and air mass trajectory. Consequently, in order to address possible influences of evaporation on δD and δ18O in paleoprecipitation from TP, we analyze n-alkane abundances and distributions along with stable carbon isotope compositions of total organic carbon (δ13CTOC) and palynological data to estimate surface moisture conditions during the early Holocene (ca. 8.7 - 7.5 kyr B.P.) and especially during the 8.2 kyr B.P. climatic event. A period of relatively dry surface conditions from ca. 8.7 to 8.2 kyr B.P., indicated by low values of the 'aquatic index' (Paq ) and by elevated Average Chain Length (ACL) values, in concert with elevated δ13CTOC values, precedes the 8.2 kyr B.P. climatic event. The event itself is characterized by slightly wetter, more humid conditions, as suggested by an increase in Paq values as well as reduced ACL and δ13CTOC values between ca. 8.2 and 7.9 kyr B.P.. In the upper section of the core, a distinct change in paleohydrology becomes. A steep increase in Paq and a decrease in ACL values as well as variations in δ13CTOC from 7.9 kyr B.P. onwards imply considerably elevated surface moisture levels, likely caused by the increased activity of the karstic system of the surrounding mountains. Collectively, the biomarker proxies presented here, reveal a concise picture of changing moisture conditions at TP that is consistent with palynological data and provide detailed paleoenvironmental information for the analysis of δDwax as a paleoprecipitation proxy. The long-term decline in δDwax values characterizes the lower section of the core until ca. 8.2 kyr B.P.. The 8.2 kyr B.P. climatic event itself is connected to two distinct positive hydrogen isotope excursions: a minor shift in δDwax around 8.2 kyr B.P. and a major shift in δDwax between ca. 8.1 and 8.0 kyr B.P.. The upper part of the section shows a progressive trend towards higher δDwax values. With no indication of increased evaporitic conditions at TP during the 8.2 kyr B.P. climatic event, as evident in biomarker proxies and pollen data, we link shifts in δDwax to changes in Mediterranean air mass trajectories supplying precipitation to northeastern Greece, with variations in the relative contributions of northerly derived, D-depleted moisture and southerly-derived, D-enriched moisture. Possible control mechanisms include changes in the influence of the Siberian High and differences in the influence of the African and Asian monsoon circulations on anticyclonic conditions in the Mediterranean region as well as regional inflow of moist air from the Aegean Sea.

Download full text files

Export metadata

Metadaten
Author:Fabian Schemmel
URN:urn:nbn:de:hebis:30:3-456341
Place of publication:Frankfurt am Main
Referee:Andreas MulchORCiD, Jörg ProssGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/01/02
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/12/15
Release Date:2018/02/08
Page Number:160
HeBIS-PPN:425536017
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht