Vermessung der Pumpeigenschafen einer kryogenen Oberfäche

  • Im Rahmen des FAIR Projekts sollen in den Ringbeschleunigern SIS18 und SIS100 Ionenstrahlen mit höchster Intensität beschleunigt werden. Um die Raumladungsgrenze zu erhöhen, werden dazu Ionen mit mittleren Ladungszuständen verwendet. Diese haben aber größere Wirkungsquerschnitte für Umladung in Wechselwirkungen mit im Strahlvakuum vorhandenen Restgasteilchen als hochgeladene Ionen. Kommt es zu Strahlverlusten, lösen die verlorenen Ionen am Auftreff­ort weitere Restgasteilchen von den Wänden des Strahlrohrs und erhöhen so lokal die Restgasdichte. Die Qualität des Vakuums ist deshalb für einen stabilen Strahlbetrieb essentiell. Im SIS100 kommen kryogene Vakuumkammern zum Einsatz, deren Wände als Kryosorptionspumpen für Wasserstoff und Helium dienen und alle schwereren Restgaskomponenten durch Kryokondensation binden können. Um die Vorhersagegenauigkeit des abteilungsinternen Programms „StrahlSim“ zur Simulation des dynamischen Vakuums zu verbessern, wurden im Rahmen dieser Arbeit das Saugvermögen und die Pumpkapazität für Wasserstoff auf einer Edelstahloberfläche untersucht. Dazu wurde ein UHV Teststand entwickelt und aufgebaut. Dieser besteht aus einem warmen Diagnoseteil, mit dem der Gasfluss in und aus dem kalten Teil überwacht werden kann. Im kalten Teil befindet sich eine kleine Kammer mit Edelstahlwänden, für die verschiedene Temperaturen zwischen 7 und 31 K eingestellt werden können. Diese Kammer repräsentiert ein kleines Stück kryogenes Strahlrohr. Bei verschiedenen Temperaturen und Oberflächenbelegungen wurden dort jeweils das Saugvermögen und der sich einstellende Gleichgewichtsdruck im Bereich von 4E-11 bis 2E-7 mbar gemessen. Die Gleichgewichtsdrücke bei einer bestimmten Temperatur bei wachsender Oberflächenbelegung werden als Adsorptionsisotherme bezeichnet. Sie ergeben sich aus dem Gleichgewicht von thermisch desorbierenden Teilchen und deren Readsorption. Die kalte Kammer wird umgeben von einem Kryostaten, bestehend aus thermischem Schild und Außentank. Für diesen wurde die thermische Auslegung durchgeführt, die Konstruktion erfolgte extern. Aus dem gemessenen Saugvermögen konnte die Haftwahrscheinlichkeit berechnet werden. Sie stellte sich als im Rahmen der Messgenauigkeit als unabhängig von Belegung und Temperatur heraus. Ihr Wert liegt nahe 1 mit einer Unsicherheit bis 0,1. Da sämtliche Oberflächen in den kryogenen Bereichen als Pumpen wirken, ist dieser Wert mehr als ausreichend um die für den stabilen Strahlbetrieb nötigen Vakuumbedingungen zu erreichen und stabil zu halten. Die Isothermen hingegen sind stark von der Temperatur abhängig. Über 18 K liegen die Gleichgewichtsdrücke bereits bei minimalen Oberflächenbelegungen in für den Strahlbetrieb nicht tolerierbaren Bereichen. Mit sinkender Temperatur können die Oberflächen immer mehr Gas aufnehmen. Doch auch bei den tiefsten vermessenen Temperaturen zwischen 7 und 8 K ist ein stabiler Strahlbetrieb nur bei Belegungen von deutlich unter einer halben Monolage, etwa 5E14 Wasserstoffmoleküle pro cm², möglich. Diese Ergebnisse wurden in StrahlSim implementiert. Zunächst wurde der Code für die Simulation von teilweise kryogenen Beschleunigern angepasst. Die wichtigste Änderung war die Einführung von thermischer Transpiration. Sie bewirkt, dass die Restgasteilchendichte an Kalt-Warm-Übergängen auf der kalten Seite erhöht ist. Mit dieser Änderung und den implementierten Ergebnissen aus den Messungen wurden Simulationen für das SIS100 durchgeführt. Mit den Isothermen konnten die bei verschiedenen Temperaturen und Bedeckungen zu erwartenden Durchschnittsdichten berechnet werden, die wiederum bestimmend für die Strahlverluste sind. Des Weiteren wurde ein mehrwöchiger Dauerbetrieb simuliert. Es zeigt sich zunächst eine Verschlechterung der Vakuumbedingungen auf Grund der langsamen Sättigung der Oberflächen. Diese verlangsamt sich aber immer mehr und stabilisiert sich bevor zu hohe Restgasdichten auftreten. Im schlechtesten Fall sind die kryogenen Oberflächen so weit gesättigt, dass sie genauso viele Gasteilchen thermisch desorbieren wie sie adsorbieren, sie also praktisch passiv sind. Auch dann wäre die Gleichgewichtsdichte im Beschleuniger noch tief genug, um Verluste durch Umladung hinreichend niedrig zu halten. Als problematisch könnten sich hingegen dynamische Temperaturerhöhungen der Kammerwände erweisen. In diesem Fall stellt sich praktisch verzögerungsfrei der durch die neue Isotherme definierte Gleichgewichtsdruck ein, der auch bei wenigen Kelvin Temperaturunterschied bereits um mehrere Größenordnungen höher liegen kann. Sind Temperaturerhöhungen während des Betriebs zu erwarten, sollten die Oberflächen so frei wie möglich von Wasserstoff gehalten werden. Dazu kann man sich eben diesen Effekt zunutze machen: Durch temporäres Anwärmen der Oberflächen unmittelbar vor dem Strahlbetrieb können die Oberflächen schnell von Wasserstoff befreit werden, der dann von lokalisierten Pumpen aus dem System entfernt werden kann.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Frederic Chill
URN:urn:nbn:de:hebis:30:3-398332
Referee:Oliver KesterORCiD, Alwin SchemppGND
Advisor:Oliver Kester
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2016/05/17
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/03/30
Release Date:2016/05/17
Tag:Vakuumphysik
Page Number:95
HeBIS-PPN:380570726
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht