Holocene evolution of coastal lagoon environments in Belize, Central America : analysis of stratigraphic patterns, mollusk shell concentrations and storm deposition

  • In Belize, which is well known for the Belize Barrier Reef and its offshore atolls, coastal lagoons are frequent morphological features along the coast. They represent transitional environments between siliciclastic and carbonate settings. In order to shed light into the Holocene evolution of coastal lagoon environments, five localities along the central coast of Belize were selected as coring sites. These include four coastal lagoons and one marsh area, namely Mantatee Lagoon, Mullins River Beach, Colson Point Lagoon, Commerce Bight Lagoon and Sapodilla Lagoon. A total of 26 sediment cores with core lengths ranging from 109 cm to 500 cm, were drilled using a Lanesky-vibracorer. Overall, 73 m of Holocene sediments and Pleistocene soil were recovered. Together with 58 radiocarbon dates the sediments reveal details on the sediment architecture and depositional features of the localities. Marine inundation of the mainland and coastal lagoon formation started around 6 kyrs cal BP. As a response to sea-level rise during the Holocene transgression, facies retrograded towards the coast, as seen in marginal marine overlying brackish mollusk faunas. Evidence for late Holocene progradation of facies due to sea-level stagnation is largely lacking. The occurrence of landward thinning sand beds, hiatuses and marine fauna in lagoonal successions are indications of event (overwash) sedimentation. Sediments recovered are largely of Holocene age (<7980 cal BP), overlying Pleistocene sections. Analyses of sediment composition and texture, radiocarbon dating and mollusk shell identification were used to describe and correlate sedimentary facies. XRD analyses have identified quartz as the dominant mineral, with the Maya Mountains as main source of coastal lagoon sediments. The most common sedimentary facies include peat and peaty sediment, mud, sand, and poorly sorted sediments. Pleistocene soil forms the basement of Holocene sediments. Holocene mud represents lagoon background permanent sedimentation. Peats and peat-rich sequences were deposited in mangrove swamp environments, whereas sandy facies mainly occur in the shoreface, beach, barriers, bars, barrier spits and overwash deposits. Facies successions could be identified for each locality, but it has proven difficult to correlate the stratigraphic sequences, especially among localities. These differences among the five locations studied suggest that apart from regional influence such as sea-level rise, local environmental factors such as small-scale variation in geomorphology and resulting facies heterogeneity, connectivity of the lagoon with the sea, antecedent topography and river discharge, were responsible for coastal sedimentation and lagoon development in the Holocene of Belize. Faunal composition and distribution patterns of mollusk assemblages from 20 shell concentrations in cores collected in coastal lagoons, a mangrove-fringed tidal inlet and the marginal marine area (shallow subtidal) show considerable variation due to environmental heterogeneity and the interplay of several environmental factors in the course of the mid-late Holocene (ca. 6000 cal BP to modern). The investigated fauna ≥2 mm comprises 2246 bivalve, gastropod and 11 scaphopod specimens. Fifty-three mollusk species, belonging to 42 families, were identified. The bivalve Anomalocardia cuneimeris and cerithid gastropods are the dominant species and account for 78% of the total fauna. Diversity indices are low in concentrations from lagoons and relatively high in the marginal marine and tidal inlet areas. Based on cluster analysis and nonmetric multidimensional scaling (NMDS), seven lagoonal assemblages and three marginal marine/tidal inlet assemblages were defined. A separation between lagoonal and marginal marine/tidal inlet assemblages seen in ordination indicates a lagoon-onshore gradient. The statistical separation among lagoonal assemblages demonstrates environmental changes during the Holocene evolution of the coastal lagoons, which is probably related to the formation of barriers and spits. The controlling factors of species distribution patterns are difficult to figure out, probably due to the heterogeneity of the barrier-lagoon systems and the interaction of paleoecological and paleoenvironmental factors. In addition to the taxonomic analysis, a taphonomic analysis of 1827 valves of A. cuneimeris from coastal lagoons was carried out. There is no relationship between depth and age of shells and their taphonomic condition. Size-frequency distributions and right-left valve ratios of A. cuneimeris suggest that valves were not transported over long distances but were deposited parautochthonously in their original habitat. Shells from tidal inlet and marginal marine environments were also predominantly deposited in their original habitats. Since the Belize coast was repeatedly affected by hurricanes and the paleohurricane record for this region is poor, the sediment cores have been examined in order to identify storm deposits. The paleohurricane record presented in this study spans the past 8000 years and exhibits three periods with increased evidences of hurricane strikes occurring at 6000-4900 cal yr BP, 4200-3600 cal yr BP and 2200-1500 cal yr BP. Two earlier events around 7100 and 7900 cal yr BP and more recent events around 180 cal yr BP and during modern times have been detected. Sand layers, redeposited corals and lagoon shell concentrations have been used as proxies for storm deposition. Additionally, hiatuses and reversed ages may indicate storm influence. While sand layers and corals represent overwash deposits, the lagoon shell concentrations, which mainly comprise the bivalve Anomalocardia cuneimeris and cerithid gastropods, have been deposited due to changes in lagoon salinity during and after storm landfalls. Comparison with other studies reveals similarities with one record from Belize, but hardly any matches with other published records. The potential for paleotempestology reconstructions of the barrier-lagoon complexes along the central Belize coast differs depending on geomorphology, and deposition of washovers in the lagoon basins is limited, probably due to the interplay of biological, geological and geomorphological processes.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Friederike Adomat
URN:urn:nbn:de:hebis:30:3-397780
Referee:Eberhard GischlerORCiD, Wolfgang OschmannGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/04/19
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/04/12
Release Date:2016/04/19
Page Number:208
HeBIS-PPN:378427865
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht