Aufbau und Untersuchung eines mit 13,56MHz betriebenen HF-Plasmas

  • Die vorliegende Arbeit präsentiert den Aufbau und die Diagnostik eines Niederdruck-HF-Plasmas. Durchgeführt wurden die Messungen in einem Gasgemisch aus Ar/He (50%=50%). Sie dienten dazu, nähere Einblicke in die Plasmaparameter eines HF-Plasmas zu erhalten. Einen Schwerpunkt der vorliegenden Arbeit bildete dabei die Auswirkung unterschiedlicher Antennengeometrien auf die Entladungseigenschaften. Hierfür wurden die Plasmaparameter Elektronentemperatur Te, Elektronendichte ne und HF-Leistung in Abhängigkeit des Gasdruckes bei einer Vorwärtsleistung des HF-Generators von 1kW untersucht. Um eine sinnvolle Diagnostik zu gewährleisten, war es zunächst erforderlich eine induktive HF-Einspeisung zu konzipieren und eine Impedanzanpassung an dem vorhandenen 13,56MHz Generator vorzunehmen. Die Einspeisung der HF-Leistung geschieht über eine Spule, nach dem Transformatorprinzip. Der Aufbau bietet die Möglichkeit einer modularen Gestaltung der verwendeten Antennengeometrie. Hierdurch ist es möglich, sowohl die Länge, die Windungsbreite als auch die Windungsanzahl schnell zu ändern, um experimentell ein Optimum der Plasmaparameter bezüglich der Plasmaanregung zu erreichen. Für die Bestimmung der Plasmaparameter wurde vorwiegend eine nicht invasive Diagnostiktechnik, die Emissionsspektroskopie, eingesetzt. Sie bietet den Vorteil, ein Plasma unberührt zu lassen und dessen Eigenschaften nicht zu verfälschen. Zusätzlich wurde mit einer Langmuirsonde die Elektronendichte gemessen. Die eingespeiste HF-Leistung wurde mit einem im HF-Generator befindlichen Reflektometer überwacht und dokumentiert. Durch systematisch durchgeführte Messungen konnte die Elektronentemperatur in Abhängigkeit des Gasdruckes für unterschiedliche Spulengeometrien mit Hilfe der Spektroskopie bestimmt werden. Es ergaben sich typische Elektronentemperaturen einer induktiven Entladung zwischen 1 eV und 5 eV. Die Ursache einer höheren Elektronentemperatur bei niedrigen Gasdrücken, unterhalb von 1 Pa, kann durch die stochastische Heizung sowie resonante Heizmechanismen erklärt werden. Die mit der Langmuirsonde bestimmte Elektronendichte belief sich auf 4 x 10 exp 15 m exp -3 bei niedrigen Gasdrücken und einem Maximum von 4 x 10 exp 17 m exp -3 bei einem Gasdruck von 3 Pa. Elektronendichten dieser Größenordnung sind typisch für induktive Entladungsplasmen, die ein Maximum von 1019 m exp -3 [Lie05] erreichen können. Die eingespeiste HF-Leistung zeigte dabei eine starke Abhängigkeit von der Antennengeometrie. Durch die Optimierung der Spulenkonfiguration ergab sich eine maximale eingespeisten HF-Leistung von 0,8kW. Ein Vergleich von HF-Leistung und Elektronendichte bestätigte die theoretische Modellvorstellung, die einen linearen Zusammenhang zwischen diesen beiden Größen postuliert. Somit konnten wichtige Eigenschaften bezüglich einer HF-Entladung sowie Einflüsse der Antennengeometrie auf die Entladungseigenschaften untersucht und umfangreich diskutiert werden.

Download full text files

  • Diplomarbeit_JWichula.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jörg WiechulaORCiDGND
URN:urn:nbn:de:hebis:30:3-365720
URL:http://www.uni-frankfurt.de/49293580/Diplomarbeit_JWichula.pdf
Referee:Joachim JacobyGND, Ulrich RatzingerORCiD
Advisor:Joachim Jacoby, Christian Teske
Document Type:Diploma Thesis
Language:German
Date of Publication (online):2016/10/31
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2016/10/31
Page Number:109
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:396384234
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG