Phänomenologie von Axialvektor-Mesonen und Mischungs effekte in Kaon-Feldern

  • Ziel dieser Bachelorarbeit war die Vorstellung und die Untersuchung eines effektiven, mesonischen Drei-Flavor-Modells der Quantenchromodynamik und dessen Phänomenologie. Dazu wurden zunächst die Kopplungskonstanten a und b des Modells durch die Berechnung dominanter Zerfallsbreiten der im Modell enthaltenen Axialvektor- und Pseudovektor-Mesonen festgelegt. Dabei wurde für die Festlegung der Kopplungskonstanten a der Zerfall von f1 (1420) in KK*(892) verwendet. Die so berechnete Kopplungskonstante wurde anschließend unter Verwendung des ρπ-Zerfalls von a1 (1260) auf Konsistenz geprüft. Das dadurch erhaltene Resultat von Γa1--> ρπ= (443:962 ± 13:456) MeV liegt sehr gut in dem von der particle data group angegebenen Wertebereich der Gesamtbreite von a1 (1260). Die Festlegung und Berechnung der Kopplungskonstante b des Pseudovektor-Sektors war Gegenstand der Bachelorarbeit von Lisa Olbrich, so dass in dieser Arbeit nur die Resultate dieser Rechnung präsentiert wurden. Jedoch passen die dort erzielten Resultate auch mit guter Genauigkeit zu den experimentell bestimmten Werten der particle data group. Das zweite Ziel dieser Bachelorarbeit war die Untersuchung der im Modell enthaltenen Mischungseffekte der Kaonen-Felder von K1 (1270) und K1 (1400). Zunächst waren im Axialvektor- und Pseudovektor-Nonet dieses Modells nur unphysikalische Kaonen-Felder K1;A und K1;B enthalten. Durch den Mischungsterm Lmix der Lagrange-Dichte des Modells existieren allerdings Mischterme beider Felder. Diese Mischterme wurden durch die Einführung der physikalischen Felder K1 (1270) und K1 (1400), welche durch eine SU(2)-Drehung aus den unphysikalischen Feldern hervorgehen, zum Verschwinden gebracht. Dies hat allerdings zur Folge, dass die Wechselwirkungsterme der physikalischen Felder K1 (1270) und K1 (1400) nun über eine gedrehte Kopplungskonstante koppeln. Diese gedrehte Kopplungskonstante ist eine Funktion der ursprünglich bestimmten Kopplungskonstanten a; b und eines Mischwinkels Φ. Dieser Mischungswinkel wurde von uns über den K? (892) π-Zerfall von K1 (1270) festgelegt. Anschließend konnten wir unter Verwendung des so berechneten Mischungswinkels Φ die Zerfallsbreite von K1 (1400) berechnen und mit den experimentell festgelegten Daten der particle data group vergleichen. Auch hier konnten wir eine gute Übereinstimmung unserer durch das Modell vorhergesagten Daten mit den experimentell bestimmten Werten erzielen.

Download full text files

  • BAdivotgeyfinal.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Florian Divotgey
URN:urn:nbn:de:hebis:30:3-338353
URL:http://th.physik.uni-frankfurt.de/~giacosa/chiralgroup-Dateien/bachelor/BAdivotgeyfinal.pdf
Referee:Dirk-Hermann RischkeORCiDGND, Francesco GiacosaORCiDGND
Document Type:Bachelor Thesis
Language:German
Year of Completion:2012
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/07/17
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:344421945
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG