Korrekturen 3. Ordnung zum SΦΦZerfall

  • Das Ziel dieser Bachelorarbeit war es, einen Überblick über die Größe der, durch Einbeziehung des Loop-Level-Diagrammes entstehenden, Korrekturen zu erhalten. Die Ergebnisse sollen eingrenzen, wann diese Korrekturen wichtig oder sogar dominant sind. Der Einfluss der Korrekturen lässt sich gut mit Hilfe von g0 und g00 einschätzen. So gilt für g0 gerade Γntl = 1.33 Γ, die Korrekturen sind also für die Berechnung wichtig jedoch nicht dominant. Für g00 beginnen die Korrekturen gerade dominant gegenüber den Berechnungen in erster Ordnung zu werden (es gilt hier Γntl = 2 Γ). Wie anhand von Tabelle 7.2 zu sehen werden die Korrekturen, abhängig von der Massenkonfiguration, ab etwa 1.6 − 2.2mS wichtig und ab etwa 2.2 − 3.4mS dominant. Für sehr kleine Massen mΦ liegt diese Grenze natürlich niedriger, es wurde jedoch gezeigt, dass die Korrekturen selbst für mΦ = 10−13mS erst ab etwa 0.65mS dominant sind. Praktisch dürften die Korrekturen daher nur sehr selten, wenn überhaupt für Werte von g < mS, eine nennenswerte Rolle spielen. Welchen Einfluss die Korrekturen bei realen Zerfallskanälen haben, sollte nun anhand der Zerfälle von f0(500), f0(980), f0(1370) und f0(1500) in Pionen gezeigt werden. Zusätzlich wurde für den Zerfall von f0(500) die Berechnung ein weiteres Mal mit endlichem (niedrigen) Cutoff durchgeführt, um dessen Auswirkungen auf die Ergebnisse zu betrachten. Dies ist dann wichtig, wenn die beobachteten Teilchen eine endliche, räumliche Ausdehnung haben (beispielsweise wenn wie hier Hadronenzerfälle betrachtet werden). Für f0(980) und f0(1500) stellen sich die Korrekturen, wie aufgrund der vorherigen Ergebnisse und des sehr kleinen Verhältnisses von Zerfallsbreite und Masse bereits erwartet, mit 1.22% beziehungsweise 0.032% als sehr gering heraus. Für f0(1370) ist das Verhältnis bereits deutlich größer, hier sind die Korrekturen mit 7.43% bereits im hohen einstelligen Prozentbereich und damit für genaue Rechnungen durchaus wichtig. Für f0(500) zeigt sich nun wiederum, dass die Korrekturen sehr groß sind, die Loop-Level-Kopplungskonstanten ist um 24.57% kleiner. Für diesen Zerfalll sollte also bereits bei einer Abschätzung das Loop-Level Diagramm einbezogen werden. Stellt man die Berechnung mit endlichem Cutoff an, so stellt sich heraus, dass sich die exakten Werte zwar durchaus verändern, die Änderungen sind jedoch nicht so groß dass die Ergebnisse drastisch abweichen. Die Kopplungskonstante wird bei dem angenommenen Cutoff Λ = 0.95 GeV um 6.47% größer. In allen Varitionen fallen die Korrekturen kleiner als 33% aus. Als letztes ist die Genauigkeit der hier erhaltenen Ergebnisse zu beurteilen. Theoretisch sollten die numerischen Berechnungen mit beliebiger Genauigkeit durchführbar sein. Bei den im Rahmen dieser Arbeit durchgeführten Berechnungen trat jedoch das Problem auf, dass die numerischen Berechnungen des Integrals für Winkel sehr nahe 0° beziehungsweise 180° chaotisch wurden. Die Winkelintegration wurde daher nur von −0.99999 bis 0.99999 durchgeführt. Da das Impulsintegral bei diesen Winkeln etwa von der Größe 0.1 − 2 ist, abhängig von der Massenkonfiguration, entstehen dadurch Fehler der Größenordnung 10−5. Die Ursache für diesen Fehler liegt vermutlich darin begründet, dass sich für diese Winkel jeweils der dritte Pol auf den ersten und der vierte Pol auf den zweiten Pol verschiebt. In diesem Fall entsteht zwar an gleicher Stelle im Zähler eine Nullstelle (schaut man sich P1, P2 und P3 an, so befinden sich an diesen Stellen auch nur einfache Pole), die numerische Berechnung kann dadurch allerdings problematisch werden. Im Rahmen dieser Arbeit wurde eine Genauigkeit von 4 Nachkommastellen allerdings als ausreichend betrachtet. Abschließend lässt sich sagen, dass die Korrekturen in (fast) allen betrachteten Fällen klein sind. In Einzelfällen können sie allerdings durchaus relevante Dimensionen erreichen, wie am f0(500) Zerfall zu sehen ist. In zukünftigen Arbeiten sollte dieses Thema also auch für Wechselwirkungen mit Ableitungen und nicht-skalare Teilchen aufgegriffen werden.

Download full text files

  • jonasschneitzer.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jonas Schneitzer
URN:urn:nbn:de:hebis:30:3-338134
URL:http://th.physik.uni-frankfurt.de/~giacosa/chiralgroup-Dateien/bachelor/jonasschneitzer.pdf
Referee:Francesco GiacosaORCiDGND, Dirk-Hermann RischkeORCiDGND
Document Type:Bachelor Thesis
Language:German
Year of Completion:2014
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/07/17
Page Number:61
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:344415333
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG