Kalibrierung eines Szintillationsdetektors mit Hilfe von LEDs

  • Seit den 20er Jahren werden Teilchen durch verschiedenste Methoden beschleunigt und wechselwirken unter Laborbedingungen mit anderen Teilchen. Hierbei spielt die Erzeugung neuer meist sehr kurzlebiger Teilchen eine wichtige Rolle. Die Untersuchung dieser Streuexperimente ist eine der wichtigsten Methoden der Elementarteilchen-, Kern- und Astrophysik. So steht bei den heutigen Kernphysik-Experimenten immer mehr die Astrophysik im Vordergrund. Die offenen kosmischen Fragen nach dem Ursprung und der Entwicklung des Universums drängen nach Antworten. Seit die Menschen bewusst denken können, gibt es diese Neugier zu erfahren woraus das Universum besteht. Unser Bild des Universums wurde durch neue Erkenntnisse alleine in den letzten 30 Jahren mehrmals radikal verändert. Besonders die Vielzahl und Häufigkeit der heute zu findenden Elemente wollen erklärt werden. Da nach heutigen Kenntnissen davon ausgegangen wird, dass kurz nach dem Urknall lediglich die leichten Elemente Wasserstoff, Helium und Lithium vorhanden waren. Hier versucht die aktuelle Forschung anzusetzen. Das Konzept der sogenannten „Nukleosynthese“ ist entwickelt worden und versucht das Entstehen aller schwereren Elemente zu erklären. So geht man heute davon aus, dass sich die weiteren Elemente bis hin zu Eisen durch Kernfusions-Prozesse innerhalb der verschiedenen Brennphasen von Sternen entwickelt haben - während alle schwereren Elemente durch neutronen-induzierte Prozesse entstanden sind. Die beiden großen Neutronenprozesse sind der r-Prozess (rapid neutron-capture process) und der s-Prozess (slow neutron-capture process). Während der r-Prozess wahrscheinlich in hochexplosiven Szenarien, wie den Supernovae, stattfindet, spielt sich der s-Prozess meist innerhalb Roter Riesen ab [Rei06]. Um diese Theorien zu belegen und zu unterstützen, ist es nötig diverse kernphysikalische Experimente auf der Erde durchzuführen. Hier versucht man den Bedingungen in den Sternen nahe zu kommen. Es werden hohe Energien und hohe Neutronenflüsse benötigt um schwerere Elemente durch Neutroneneinfangs- und Fusionsprozesse zu erzeugen. Ziel Motivation Einleitung ist es unter anderem nukleare Wirkungsquerschnitte diverser Reaktionen experimentell nachzuweisen und auf die Sternmodelle umzurechnen. Die Schwierigkeit liegt hier nicht nur in der Erzeugung und Erhaltung dieser hohen Raten, sondern vielmehr auch in der Detektion der entstandenen Fragmente und Teilchen. Da diese Teilchen und subatomaren Partikel nur eine jeweils sehr kurze Lebensdauer besitzen, ist es eine große Herausforderung möglichst effiziente und effektive Detektoren zu entwickeln. Damit diese Detektoren in den jeweiligen Experimenten dann möglichst optimal arbeiten und die gewünschten Auflösungen liefern, ist es nötig gute Kalibrierungsmöglichkeiten im Voraus auszunutzen.

Download full text files

  • gerbig_13_master.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Julian Gerbig
URN:urn:nbn:de:hebis:30:3-337392
URL:http://exp-astro.physik.uni-frankfurt.de/docs/gerbig_13_master.pdf
Advisor:René Reifarth, Michael Heil
Document Type:Master's Thesis
Language:German
Year of Completion:2013
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/07/01
Page Number:61
Last Page:56
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:344367274
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG