Neutroneneinfangquerschnitte von 63,65Cu und 69,71Ga bei 25 keV und 90 keV

  • Ziel der nuklearen Astrophysik ist es, die solare Häufigkeitsverteilung der Elemente zu erklären (siehe Seite 10, Abb. 1.1). Die Elemente bis zur Eisengruppe sind dabei unmittelbar nach dem Urknall und während verschiedener Brennphasen in Sternen durch Kernfusion entstanden. Da die Bindungsenergie pro Nukleon der Elemente in der Eisengruppe am höchsten ist, ist für den Aufbau schwererer Elemente keine Energiegewinnung durch Fusion geladener Teilchen mehr möglich und Neutroneneinfänge und Betazerfälle spielen die entscheidende Rolle für die Nukleosynthese. In Abhängigkeit von der Neutronendichte und der Temperatur wird dabei zwischen dem langsamen Neutroneneinfangprozess, dem s-Prozess, und dem schnellen Neutroneneinfangprozess, dem r-Prozess, unterschieden. Während der r-Prozess weit abseits der stabilen Isotope an der Neutronenabbruchkante statt findet, verläuft der Reaktionspfad des s-Prozesses entlang der stabilen Isotope am "Tal der Stabilität".

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Clemens Beinrucker
URN:urn:nbn:de:hebis:30:3-337192
URL:http://exp-astro.physik.uni-frankfurt.de/docs/beinrucker_13_master.pdf
Referee:René ReifarthORCiDGND
Advisor:René Reifarth, Kerstin Sonnabend
Document Type:Master's Thesis
Language:German
Year of Completion:2013
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/05/20
HeBIS-PPN:341340979
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht