Feinstrukturelle und immunhistologische Charakterisierung potenzieller Rezeptoren der Magnetsinnesorgane von Vögeln

  • Es gibt für die Orientierung von Vögel ein allgemeingültiges Konzept, das Karte-Kompass-Prinzip (Kramer 1953, 1957): Der Karten-Schritt besteht darin, den eigenen Standort zu ermitteln und mit dem Ziel in Beziehung zu setzten. Damit wird die geografische Richtung bestimmt, die im Kompass-Schritt in eine konkrete Richtung umgesetzt wird. Für Beides nutzen Vögel auch das Magnetfeld der Erde; in der Karte als einen Faktor den Verlauf der Intensität, im Magnetkompass die Achse der Feldlinien. Der Magnetrezeptor, der die Karte mit Informationen versorgt, ist im Schnabel lokalisiert, der des Kompasses im Auge. Ich habe mich in meiner Arbeit darauf konzentriert, die zwei potenziellen Magnetrezeptoren der Vögel feinstrukturell und immunhistologisch weiter zu charakterisieren. Für den Magnetkompass wird auf Grund des Radikalpaar-Modells angenommen, dass Cryptochrome die Rezeptormoleküle sein könnten (Ritz et al. 2000). Bei Vögeln sind vier Cryptochrome bekannt, allerdings muss das Rezeptormolekül des Magnetkompasses auch in seiner Lokalisation bestimmte Kriterien erfüllen. Die für meine Arbeit bedeutsamen Kriterien sind: (1) die gleiche Ausrichtung der Proteine in einer Rezeptorzelle und (2), dass die einzelnen Rezeptorzellen alle Raumrichtungen abdecken. Ich habe in meiner Arbeit Cryptochrom 1a (Cry1a) und Cryptochrom 1b (Cry1b) auf ihr Vorkommen in der Retina von Rotkehlchen (Erithacus rubecula) und Hühnern (Gallus gallus) untersucht. Cry1b befindet sich bei Rotkehlchen während der Zugzeit in den Ganglienzellen, in denen es teilweise an Membranen gebunden vorliegt, die jedoch keine bevorzugte Richtung haben. Somit erscheint mir Cry1b als Rezeptormolekül für den Magnetkompass als eher ungeeignet. Cry1b könnte, wie viele Cryptochrome, an der Steuerung von circadianen Rhythmen beteiligt sein. Cry1a hingegen ist bei beiden untersuchten Vogelarten in den UV/V-Zapfen an die Diskmembranen gebunden, was eine Ausrichtung ermöglicht. Die UV/V-Zapfen sind über die gesamte Retina gleichmäßig verteilt, und durch die sphärische Form des Auges decken die einzelnen Rezeptoren jede Raumrichtung ab. Somit erfüllt Cry1a die Bedingungen des Radikalpaar-Modells, und ich schließe daraus, dass es sich hierbei um das Rezeptormolekül des Magnetkompasses handeln könnte. Cry1a ändert nach Lichtabsorption wie viele Cryptochrome seine Konformation. Der von mir verwendete Antikörper bindet nur die lichtaktivierte Form des Proteins. In Versuchen, in denen Hühner verschiedenen monochromatischen Lichtern ausgesetzt wurden, zeigt sich, dass sich Cry1a in UV bis Gelb in lichtaktiviertem Zustand befindet. Dies stimmt sowohl mit der spektralen Empfindlichkeit des Magnetkompasses der Vögel als auch mit der des Flavins, des lichtsensitiven Teils des Cryptochroms, überein. Versuche mit grünem Licht lassen vorsichtige Rückschlüsse auf das für den Magnetkompass relevante Radikalpaar zu: so ist das Flavin erst im zweiten Oxidationsschritt grünlicht-sensitiv, und Cry1a ist nur nachweisbar, also lichtaktiviert, wenn der erste Schritt bereits im Hellen abgelaufen ist. Versuche in denen die Tiere vorab im Dunkeln waren, führen nicht zur erneuten Lichtaktivierung unter grünem Licht. Dies macht nur eines der beiden im Flavinzyklus entstehenden Radikalpaare wahrscheinlich, nämlich das in der Reoxidation entstehende, da das Radikalpaar im ersten Schritt der Oxidation unter Grün nicht entsteht. In Bezug auf den Magnetrezeptor im Schnabel konnte bereits bei Tauben eine detaillierte Struktur beschrieben werden, die als Magnetrezeptor geeignet ist, nämlich Magnetit- bzw. Maghemit-Teilchen in Dendriten der Nerven (Fleissner et al. 2003). Auch Hühner haben eisenhaltige Strukturen im Oberschnabel, die in ihrer Eisenoxid-Zusammensetzung denen der Tauben entsprechen (Falkenberg et al. 2010). Ich konnte in meiner Arbeit zeigen, dass die eisenhaltigen Strukturen im Oberschnabel der adulten Hühner an oder in Nervenfasern liegen. Elektronenoptisch bestehen diese eisenhaltigen Strukturen im Nervengewebe bei Hühnern, wie bei Tauben beschrieben, aus einem 3-5 µm großen Vesikel, der von eisenhaltigen ‘Schuppen’ besetzt ist, aus circa 1 µm langen Plättchen und Kugeln mit einem Durchmesser von etwa 1 µm. Sie sind in Feldern angeordnet, in denen diese Zellstrukturen gleich ausgerichtet sind. In der Anzahl und Lokalisation der Felder der eisenhaltigen Dendriten gibt es Unterschiede zwischen Hühnern und Tauben, allerdings ist unklar, inwie¬weit dies zu Unterschieden in der Verarbeitung im Gehirn führt. Die Entwicklung der eisenhaltigen Dendriten der Hühner beginnt erst nach dem Schlupf, am Tag des Schlupfes haben Küken noch keine eisenhaltigen Strukturen, abgesehen von roten Blutkörperchen. In den ersten 5 Tagen werden eisenhaltige Makrophagen im frontalen Bereich des Schnabels gebildet, die anschließend wieder reduziert werden. Bei 12 Tage alten Hühnern werden diese auch im lateralen Bereich des Oberschnabels angelegt und ebenfalls dort bis Tag 21 wieder reduziert. 21 Tage alte Hühner haben nur noch wenige eisenhaltige Makrophagen, allerdings ein erstes Feld von eisenhaltigen Dendriten. Die Röntgenabsorption zeigt einen Unterschied in der Eisenoxid-Zusammensetzung zwischen eisenhaltigen Makrophagen und eisenhaltigen Dendriten. Es könnte sein, dass die eisenhaltigen Makrophagen an der Synthese der eisenhaltigen Dendriten beteiligt sind, da sie Eisen aufnehmen, aber auch wieder abgeben können und in demselben Zeitraum reduziert werden, wie die eisenhaltigen Dendriten aufgebaut werden. Sowohl Tauben als auch Rotkehlchen haben sich phylogenetisch bereits vor 95 Millionen Jahren von den Hühnern abgespalten. Es gibt sowohl in der Lokalisation von Cry1a als auch in der Struktur der einzelnen eisenhaltigen Dendriten keine Unterschiede, so dass es sich bei den beiden Magnetrezeptoren der Vögel vermutlich um sehr alte Mechanismen handelt, die sich in der Evolution kaum verändert haben. Vermutlich sind sie vogelspezifisch, da es in dieser Hinsicht keine erkennbare Gemeinsamkeit mit anderen Wirbeltieren gibt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christine Nießner
URN:urn:nbn:de:hebis:30:3-326917
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Günther FleissnerGND, Manfred KösslORCiD, Roswitha WiltschkoORCiDGND
Advisor:Günther Fleissner, Roswitha Wiltschko
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2014/01/21
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/12/12
Release Date:2014/01/21
Tag:Magnetrezeption
Page Number:186
HeBIS-PPN:33563219X
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht