Pharmakologische Charakterisierung zentraler cholinerger Dysfunktionen in transgenen Mausmodellen

  • Die cholinerge Dysfunktion steht in Zusammenhang mit der Ätiologie der Alzheimer-Krankheit (AD). Das Absterben cholinerger Neurone führt zu einer verminderten cholinergen Neurotransmission im Gehirn. Die Abnahme der Acetylcholinesterase-(AChE)-Aktivität und eine leichte Zunahme der Butyrylcholinesterase-(BChE)-Aktivität zählen zu den charakteristischen Merkmalen der AD. Acetylcholinesterase-Inhibitoren (AChEI) sollen Acetylcholin (ACh)-Konzentrationen im Gehirn steigern, um cholinerge Defizite auszugleichen. Allerdings zeigen AChEI in der Klinik nur einen mäßigen Erfolg. Zur Optimierung der Therapie mit Esterasehemmern, wurden im Rahmen dieser Arbeit drei transgene Mausmodelle mit cholinergen Veränderungen untersucht. Zunächst wurde die AChE-heterozygote (AChE +/-) Maus analysiert. Die Maus weist bei einer 60-prozentigen AChE-Restaktivität (60,6 U/mg in AChE +/- versus 100,0 U/mg in WT-Mäusen) nur sehr leicht erhöhte ACh-Konzentrationen im Gehirn (9,0±5,1 fmol/5 µl in AChE+/- versus 5,0±3,6 fmol/5 µl in der WT-Maus) auf, die mithilfe der in vivo Mikrodialyse bestimmt wurden. PET-Studien haben gezeigt, dass die zerebrale AChE-Restaktivität in AD-Patienten, die mit Donepezil behandelt wurden, immer noch 70 bis 90% beträgt. Vom AChE +/- Modell kann abgeleitet werden, dass eine bis zu 50-prozentige AChE-Hemmung durch AChEI nicht genügt, um ACh-Konzentrationen im Gehirn von Patienten deutlich zu erhöhen. Leider ist eine Dosiserhöhung der AChEI durch das Auftreten von unerwünschten Wirkungen (Diarrhö, Übelkeit, Erbrechen) begrenzt. Hippocampale ACh-Konzentrationen in der AChE +/- Maus steigen nach intrazerebraler und intraperitonealer Gabe von selektiven AChEI signifikant stärker an als in WT Mäusen. AChEI können ACh-Konzentrationen also auch noch bei einer verminderten AChE-Aktivität steigern. Die Cholinacetyltransferase-Aktivität ist in AChE +/- Mäusen unverändert, während der hochaffine Cholintransport signifikant um 58% erhöht ist. Veränderungen der kognitiven Leistungsfähigkeit der AChE +/- Maus sind in Verhaltenstests nicht zu erkennen. Es folgte die Untersuchung der PRiMA (Prolin-reicher Membrananker) defizienten Maus und der AChE del5 6-Maus. PRiMA ist ein transmembranäres Protein, das zur Prozessierung der AChE und ihrer Verankerung in der Membran verantwortlich ist. PRiMA kommt hauptsächlich im Gehirn vor, daher kann die PRiMA-KO-Maus dort keine AChE-Verankerung ausbilden. Die AChEdel5 6-Maus kann weder im Gehirn noch in der Peripherie AChE-Verankerungen formen, da eine Domäne fehlt, die essentiell für die Wechselwirkung mit Anker-Proteinen ist. Beide Mausmodelle weisen geringe AChE-Restaktivitäten (< 10 %) und drastisch erhöhte ACh-Konzentrationen im Gehirn auf. Die ACh-Konzentrationen im Striatum der PRiMA-KO-Maus sind circa 350 fach erhöht (4±3 fmol/5 µl in WT-Mäusen versus 1450±700 fmol/5 µl in PRiMA-KO-Mäusen). Allerdings zeigt die PRiMA-KO-Maus keinen Phänotyp, während die AChE del5 6 Maus krank aussieht (Tremor, geringes Körpergewicht, stumpfes Fell). Beide Modelle bestätigen, dass ACh-Spiegel im Gehirn nur dann stark ansteigen, wenn die AChE immens gehemmt ist. Ferner kann aus der PRIMA-KO-Maus gefolgert werden, dass die Interaktion zwischen AChE und PRiMA ein geeignetes Target für die Therapie der cholinergen Dysfunktion darstellen könnte. Nach intrazerebraler Applikation eines selektiven AChE-Inhibitors (BW284c51 1 µM), steigen die ACh-Spiegel im Gehirn beider transgener Mäuse signifikant an. Eine Veränderung der ACh-Konzentrationen nach BChEI Gabe ist weder bei der AChE +/-, der PRiMA-KO, noch bei der AChE del5 6 Maus zu sehen. Die BChE trägt bei einer AChE-Restaktivität (10 bis 40 %) nicht zum hydrolytischen Abbau von ACh bei. Daraus lässt sich ableiten, dass bei stark verminderten AChE-Aktivitäten, der Einsatz von BChEI vermutlich keinen weiteren Nutzen erbringt. Um die Adaptionsmechanismen der PRiMA-KO-Maus aufzuklären, wurde die M2-Rezeptor Funktion (negativer Feedback-Mechanismus) getestet. Da die striatalen ACh-Konzentrationen in der PRiMA-KO-Maus nach Behandlung (lokal und i.p.) mit M2-Agonisten und -Antagonisten kaum verändert sind, lässt dies einen nicht-funktionalen M2 vermuten. Aus den Ergebnissen können wichtige Erkenntnisse über die Therapie der Alzheimer-Krankheit gewonnen werden. Die Bestimmung der ACh-Konzentrationen, in Gegenwart unterschiedlicher AChE-Aktivitäten der verschiedenen Mausmodelle, zeigt den Zusammenhang zwischen ACh und AChE im Säugerhirn und erklärt die limitierte klinische Wirksamkeit der AChE-Inhibitoren. Die Hemmung der Interaktion zwischen PRiMA und der AChE stellt eine denkbare Interventionsmöglichkeit dar, um ACh-Konzentrationen im Gehirn zu steigern, ohne dabei periphere Nebenwirkungen auszulösen. Ziel der weiteren Forschung sollte sein, PRiMA bzw. die Interaktion zwischen PRiMA und AChE als Target für die Therapie der Alzheimer-Krankheit weiter zu erforschen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Franziska MohrGND
URN:urn:nbn:de:hebis:30:3-325379
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Jochen KleinORCiDGND, Wolfgang KummerGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2014/01/15
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/11/26
Release Date:2014/01/15
Page Number:187
HeBIS-PPN:335479294
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht