Synthese und strukturelle Untersuchungen an Peptiden und Proteinen mit NMR- und Ultrakurzzeitspektroskopie

  • Azopeptide: Peptide mit eingebauten lichtgesteuerten Schaltern sind interessante Systeme, um konformationelle Dynamik in Peptiden zu untersuchen. In dieser Arbeit ist es gelungen einen solchen Schalter herzustellen und in ein von Robertson et al. entworfenes Modellsystem als Teil des Peptidrückgrats einzuführen. Es wurde somit die Synthese von Peptiden mit eingebauten lichtgesteuerten Schaltern fortgeführt und auf ein größeres System übertragen. Die zu erwartenden Probleme bei der Synthese eines Systems dieser Größe (30 Aminosäuren + Schalter) konnten durch Modifizierung der Standardsynthese für Peptide (Fmoc-Strategie) an der Festphase erreicht werden. Es war daher möglich, ausreichende Mengen des Peptids herzustellen sowie die freie SH-Gruppe des Peptids mit einer Schutzgruppe zu versehen, was dem Molekül zu weiterer Stabilität verhalf. Das Azopeptid wurde mit UV/vis- und Ultrakurzzeit-Spektroskopie, und besonders im Vergleich mit dem Schalter AMPB alleine, charakterisiert. Hierbei wurden folgende Erkenntnisse offen gelegt: - Das Azopeptid in Wasser verhält sich bei Belichtung (367 nm) sehr ähnlich dem AMPB (7) in DMSO (isosbestischer Punkt bei 288 nm) - Die thermische Rückreaktion lässt sich bei 330 nm biexponentiell fitten, bei 260 nm nicht, was Rückschlüsse auf mangelnde Stabilität des Azopeptids nach Belichtung zulässt (freie SH-Gruppe). - Der Abfall des angeregten Zustandes des Azopeptids folgt multiexponentiellen Kinetiken auf Zeitskalen zwischen einigen hundert fs bis zu wenigen ps. - Der Schalter AMPB (7) in DMSO verhält sich bei Belichtung (367 nm) sehr ähnlich dem beidseitig entschütztem Schalter (8) in Wasser. - Es sehr ähnliche Kinetiken für AMPB (7) in DMSO und das Azopeptid in Wasser über den gesamten spektralen Bereich werden gefunden; Absorptionsaufbau erfolgt innerhalb der Zeitauflösung des Experiments, Unterschied um einen Faktor 2 in der Zerfallsdynamik, die für das Azopeptid langsamer ist. Parvulustat: Parvulustat ist wie Tendamistat ein alpha-Amylase-Inhibitor; die Struktur von Tendamistat ist bereits sehr gut sowohl durch NMR als auch durch Röntgenkristallographie untersucht ist. Mit Parvulustat teilt Tendamistat nur 29,6 % Sequenzidentität bei ähnlicher Länge und gleicher Funktion der beiden Proteine. Es war daher von großem Interesse, die Struktur von Parvulustat aufzuklären um Ähnlichkeiten und Unterschiede der beiden Proteine diskutieren zu können. In dieser Arbeit ist es gelungen mit Hilfe der hochauflösenden, heteronuklearen 3D NMR-Spektroskopie in Lösung und iterativen Rechungsmethoden die Struktur des Proteins Parvulustat, anhand von 15N- und 13C,15N-markierten Proben, in sehr guter Qualität aufzuklären. Weiterhin ist es gelungen, dynamische Eigenschaften des Proteins durch Relaxationsdaten darzustellen. Basierend auf diesen Daten war es möglich die beiden Proteine Parvulustat und Tendamistat umfassend miteinander zu vergleichen und Schlüsse bezüglich ihres Bindungsmechanismus zu ziehen. Insgesamt ist zwischen beiden Proteinen eine große Ähnlichkeit zu verzeichnen, aber es wurden auch einige Unterschiede festgestellt: beide Proteine besitzen zwar die gleiche beta-Faltblatt-Struktur, jedoch sind bei Parvulustat die einzelnen Stränge etwas kürzer ausgebildet. Weiterhin hat in Parvulustat ein Strang eine andere Krümmung, weil ein Prolin anstelle eines Leucins in Tendamistat sitzt und durch seine einzigartige Form die Struktur in dieser Region ändert. Bezug nehmend auf die Ladungsverteilung beider Proteine ist festzustellen, dass beide durch ein hydrophobes Herzstück stabilisiert werden und sich insgesamt sehr ähnlich sind, bis auf die Position R44 in Parvulustat bzw. Y46 in Tendamistat, was in Parvulustat eine positive Ladung an der Oberfläche generiert. Generell ist noch zu sagen, dass man beim Interpretieren der Daten in Bezug auf Tendamistat vorsichtig sein muss, da es durchaus Unterschiede in der Datenakquise gibt: im Gegensatz zu Tendamistat dessen Struktur anhand von homonuklearen 2D NMR-Techniken aufgeklärt wurde, waren für Parvulustat bereits 3D Pulssequenzen verfügbar, NMR-Spektrometer mit höheren Feldern, weiterentwickelte Rechenprogramme, so dass u. a. auch die Relaxationsdaten einflussnehmend in die Strukturrechnung mit eingebaut werden konnten.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stephan Rehm
URN:urn:nbn:de:hebis:30-71740
Referee:Harald SchwalbeORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/10/16
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/08/21
Release Date:2009/10/16
HeBIS-PPN:216754895
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht