CtaG : Kupferchaperon und Assemblierungsfaktor für die Biogenese der Cytochrom-c-Oxidase in Paracoccus denitrificans

  • Im Rahmen dieser Arbeit wurde das Protein CtaG aus Paracoccus denitrificans eingehend charakterisiert. Es wurde überprüft, ob dieses 21 kDa große Membranprotein als Kupferchaperon und Assemblierungsfaktor für die Untereinheit I der Cytochrom c Oxidase, das heißt für die Biogenese des CuB-Zentrums, in Frage kommt. Eine bioinformatische Analyse zeigte zunächst, dass CtaG, ein Homolog des eukaryotischen Proteins Cox11, zu den am stärksten konservierten Assemblierungsfaktoren der Cytochrom c Oxidase gehört. Interessanterweise sind diese Proteine alle an der Biogenese der redoxaktiven Metallzentren beteiligt, und nur sie sind auch in Paracoccus denitrificans konserviert. Somit stellt Paracoccus ein ideales Modellsystem dar, um die essentiellen Schritte der Biogenese der Cytochrom c Oxidase zu untersuchen. Ein lösliches Fragment von CtaG (CtaGLF) wurde heterolog in E. coli exprimiert und mit Hilfe eines spaltbaren His6-tags aufgereinigt. Es wurde ein Protokoll entwickelt, mit dessen Hilfe die Aggregation des löslichen Fragments minimiert und das Protein in hochreiner, aggregatfreier Form isoliert werden kann. Rekonstitutionsversuche zeigten, dass CtaGLF ein spezifisch Cu(I)-bindendes Protein ist. Nach der heterologen Expression in E. coli ist CtaGLF kofaktorfrei. Ein Protokoll zur in vitro Rekonstitution mit Kupferionen wurde entwickelt, mit welchem ein stöchiometrisches Kupfer/Protein-Verhältnis erreicht wird. Gelfiltrations- und ICP-MS-Analysen zeigten, dass CtaGLF Kupferionen ausschließlich als Dimer bindet. Rekonstitutionen bei denen Cu(I), Cu(II), Co(II), Fe(II), Mn(II), Mg(II) und Ni(II) sowohl einzeln als auch simultan angeboten wurden, führten zwar zu wenig reproduzierbaren absoluten Stöchiometrien, bestätigten aber, dass CtaGLF bevorzugt Cu(I) bindet. Mutagenesestudien bewiesen einerseits, dass drei Cysteinreste maßgeblich für die Kupferbindung verantwortlich sind und deuteten andererseits darauf hin, dass zwei identische, punktsymmetrische Bindungsstellen des CtaGLF-Dimers die Kupferionen koordinieren. Mit Hilfe einer Multiseq-Analyse wurden zunächst hochkonservierte Oberflächenreste von CtaG identifiziert. Eine Auswahl dieser Aminosäuren wurde per gerichteter Mutagenese ersetzt und der Effekt dieser Mutationen auf Stöchiometrie, Affinität und Dimerisierung von CtaGLF wurde untersucht. Die Affinitäten wurden dabei mit Hilfe von Kompetitionsexperimenten mit dem Cu(I)-spezifischen Chelator BCA analysiert. Insgesamt vier mögliche Szenarien für die Kupferbindung von CtaG wurden postuliert und anhand der Datenlage diskutiert. Das Szenario III, welches die Datenlage am besten zu erklären vermag, sieht eine trigonale Koordination der Kupferionen vor, an welcher die Cysteine des hochkonservierten CFCF-Motivs einer Polypeptidkette ein gemeinsames Koordinationsfeld mit dem nahe der Transmembranhelix gelegenen Cystein 38 der jeweils anderen Polypeptidkette bilden. Mit Hilfe von UV/Vis-spektroskopischen Messungen wurde gezeigt, dass die Bindung von Kupferionen an CtaGLF zu einer Absorption bei 358 nm führt. Diese kann mit einem Extinktionskoeffizienten von E delta 358 nm = 936 M-1cm-1 zur Beobachtung des Kupfertransfers von CtaGLF auf einen Akzeptor verwendet werden. Um eine Beteiligung von CtaG bei der Insertion des CuB-Ions in die Untereinheit I der Cytochrom c Oxidase (UE I) zu beweisen, wurden zwei Arbeitshypothesen aufgestellt und empirisch untersucht: Die erste Hypothese geht von einer posttranslationalen Kupferinsertion aus. Die UE I wird laut dieser Hypothese zunächst vollständig exprimiert und in die Membran inseriert, bevor das Kupferion über einen Kanal in das 13 Å unterhalb der Membranoberfläche gelegene aktive Zentrum der Oxidase inseriert wird. Drei Ansätze wurden zur empirischen Überprüfung dieser Hypothese verfolgt: Erstens wurde ein in vitro Transferassay etabliert, bei dem heterolog exprimierte, kofaktorfreie UE I als Akzeptor für Kupferionen von CtaGLF diente. Zweitens wurden bioinformatische Analysen durchgeführt um potentielle Interaktionsflächen zwischen CtaG und UE I zu identifizieren. Und drittens wurde mit Hilfe koaffinitätschromatographischer Versuche eine Interaktion zwischen CtaG und kofaktorfreier UE I untersucht. Die Ergebnisse dieser Untersuchungen sprechen allesamt gegen eine posttranslationale CtaG-vermittelte Insertion von Kupferionen in die UE I der Cytochrom c Oxidase. Die zweite Hypothese geht davon aus, dass die prosthetischen Häm- und Kupfergruppen bereits vor der vollständigen Membraninsertion, das heißt kotranslational auf die UE I übertragen werden. Um diese Hypothese zu überprüfen, wurden ebenfalls mehrere Ansätze verfolgt: Erstens wurde die UE I in Gegenwart und Abwesenheit von CtaG heterolog in E. coli exprimiert und anschließend aufgereinigt. In Abwesenheit weiterer Assemblierungsfaktoren ist CtaG in diesem System nicht dazu in der Lage den Kupfergehalt der UE I zu erhöhen. Zweitens wurde mit Hilfe von Blau-Nativ Gelen und Crosslinking-Versuchen im nativen Wirt Paracoccus denitrificans nach einer Wechselwirkung zwischen CtaG und UE I gesucht. Insbesondere die Ergebnisse der Crosslinking-Versuche deuten auf einen Assemblierungskomplex hin, der sowohl CtaG als auch die UE I der Cytochrom c Oxidase enthält. In einem dritten Ansatz wurde ein zellfreies Expressionssystem etabliert, welches direkten Zugang zu naszierenden Ketten der UE I ermöglicht. Dieses System erscheint vielversprechend und dient derzeit als Basis für weitere Biogenesestudien. Die Ergebnisse der vorliegenden Arbeit zeigen, dass CtaG ein spezifisch Cu(I)-bindendes Protein ist, das im Zuge der Kupferbindung dimerisiert und in Paraoccus denitrificans in einem hochmolekularen Komplex gemeinsam mit UE I vorliegt. Die gegenwärtige Datenlage spricht dafür, dass CtaG als Kupferchaperon an der Biogenese der Cytochrom c Oxidase beteiligt ist und das CuB-Ion in einem kotranslationalen Mechanismus in die UE I der Cytochrom c Oxidase inseriert.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Peter Greiner
URN:urn:nbn:de:hebis:30-67919
Referee:Bernd LudwigGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/07/17
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/07/13
Release Date:2009/07/17
HeBIS-PPN:214017214
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht