Produktion, Reinigung und Charakterisierung von monovalenten Kation/Proton - Antiportern

  • Eine wichtige Klasse von Membranproteinen ist die der aktiven sekundären Transporter. Diese Proteine werden in allen Spezies gefunden und verwenden einen Gradienten von löslichen Substanzen, um den Transport von Substraten voran zu treiben. Dieser Transportprozess ist essentiell, um die chemische Zusammensetzung des Zytoplasmas, wie Kalium- oder Natriumkonzentration von der des umgebenden Milieus unterschiedlich zu halten. Die Konzentration von K+ und Na+ in der Zelle sind wichtig für ein konstantes Zellvolumen, für die pH-Homöostase, für die Erregbarkeit von Nervenzellen und füür die Akkumulierung von Zuckern und Aminosöuren über Kotransportsysteme. In Bakterien wie Escherichia coli wird mit der Oxidation von Substraten durch die Elektronentransportkette ein Protonengradient und gleichzeitig eine Potentialdifferenz erzeugt. Ein Beispiel für einen sekundären Transporter, der diese Potentialdifferenz ausnutzt ist der Na+/H+-Antiporter NhaA, einer der am besten untersuchten Antiporter aus E. coli (Hunte, Screpanti et al. 2005). Dieser Antiporter ist essentiell für die Fähigkeit von Bakterien im alkalischen pH-Bereich zu überleben. Auch bei Säugetieren, sind die Isoformen der humanen Natrium/Protonen-Antiporter SLC9A1-SLC9A8 (NHE1-8) unentbehrlich für eine Reihe physiologischer Prozesse. So wird über die Antiporter-Aktivität nicht nur der Säure-Base-Haushalt und das Verhältnis des Zellvolumens zur Menge an Elektrolyten reguliert, Antiporter spielen ebenso eine wichtige Rolle bei der Adhäsion, Migration und Proliferation der Zelle (Orlowski and Grinstein 2004). Anomalien in diesem Bereich sind charakteristisch für maligne Zellen. Die Rolle von NHE1 in der Entwicklung von Tumoren ist daher ein wichtiger Ansatzpunkt für die Entwicklung von Krebsmedikamenten. Im Herz ist NHE1 die dominierende Isoform und wird damit zu einem pharmakologisch wertvollen Zielprotein (Malo and Fliegel 2006). Struktur und Mechanismus der meisten Antiporter ist bis dato jedoch noch nicht bekannt. Neben den klassischen Methoden der Pharmaentwicklung wird die strukturbasierende Wirkstoffentwicklung immer wichtiger um effiziente Medikamente ohne Nebenwirkung zu herzustellen. Hierfür werden jedoch 3D-Strukturen von Proteinen, sowie genaue Kenntnisse von deren Mechanismus benötigt. Zieht man in Betracht, dass 70% aller bis jetzt entwickelten Medikamente als Ziel ein Membranprotein haben, wird die Notwendigkeit klar, eine möglichst große Anzahl von Membranproteinstrukturen verfgbar zu haben. Wie bereits erwähnt ist die Klasse der monovalenten Kation/Proton-Antiporter aufgrund ihrer vielfältigen Aufgaben, eine äußerst wichtige Zielgruppe für die strukturbasierende Wirkstoffentwicklung. Die große Anzahl an entschlüsselten Genomen eröffnet hier ein breites Forschungsfeld füür die Strukturbiologie. In dieser Arbeit wurden daher Techniken und Methoden aus Hochdurchsatz-orientierten Strukturgenomikprojekten übernommen, um eine große Anzahl von Zielproteinen in ausreichender Menge für die funktionelle Charakterisierung und für die Kristallisation zu produzieren. Als Zielorganismen wurden Salmonella typhimurium LT2, Helicobacter pylori 26695, Aquifex aeolicus VF5 und Pyrococcus furiosus ausgewählt. Die Grundlage dieser Entscheidung hierfür waren die humanpathogenen Eigenschaften der beiden zuerst genannten Organismen und die Hyperthermophilie der beiden letzteren. Dadurch konnten sowohl klinische Anwendungsmöglichkeiten, als auch die potentiell höhere Stabilität der hyperthermophilen Proteine genutzt werden. Als Proteinzielgruppe wurden die monovalenten Kation/Proton-Antiporter aus allen 4 Organismen ausgewählt. Des Weiteren wurden Antiporter zweier eukaryotischer Systeme, Saccharomyces cerevisiae und Homo sapiens in die Zielproteingruppe aufgenommen. In dieser Arbeit wurden 24 verschiedene monovalente Kation/Proton-Antiporter untersucht. Von diesen 24 Zielproteinen konnten 12 in Expressionsvektoren kloniert und produziert werden. Von diesen 12 Antiportern konnten die Zielproteine STM0039 (STNhaA), HP1552 (HPNhaA), STM1556 (NhaC) und PF2032 (NhaC) in einer für die Kristallisation ausreichenden Homogenität und Ausbeute gereinigt werden. Mit der Ausnahme von HP1552 ist bis heute in keiner Veröffentlichung über diese Zielproteine berichtet worden. Durch Komplementationsexperimente mit dem E. coli-Deletionsstamm EP432 konnten eine Reihe von Zielproteine (STM0039, HP1552, PF2032, Aq_2030, STM1806, STM1556) bezüglich ihrer Fähigkeiten zum Na+/H+-Antiport untersucht werden. Die Ziel-proteine STM0039, STM1556 und HP1552 konnten zum ersten Mal kloniert, produziert, gereinigt und anschlieáen in Liposomen rekonstitutiert werden.Weiterhin konnte durch SSM-Messung die pH-Regulation der Zielproteine STM0039 und HP1552 gezeigt werden. Im Gegensatz zu bisherigen Literaturangaben ist HP1552 im pH-Bereich von pH 6 bis 8,5 nicht konstitutiv aktiv, sondern erfährt eine ähnliche Aktivierung wie STM0039 oder ECNhaA. STM0039 lässt sich zudem durch 2-Aminoperimidin inhibieren. Für STM0039 konnten die ersten Proteinkristalle der inaktiven Konformation bei pH 4 erzeugt werden. Weiterhin wurde in dieser Arbeit ein gegen das Zielprotein STM0039 gerichtetes scFV-Antikörperfragment (F6scFv) eingehend charakterisiert. Durch die Ko-Kristallisation des Antikörperfragments F6scFv mit STM0039 konnten die ersten 3 dimensionalen Kristalle in einer aktiven Proteinkonformation bei pH 7,5 erzeugt werden. Neben den bereits verfeinerten Kristallisationsbedingungen für das Zielprotein STM0039 wurden erfolgreich erste Kristallisationsbedingungen für STM0086 und PF2032 gefunden. Es wurde eine Vielzahl von Produktions- und Reinigungsprotokollen füür die Zielproteine etabliert. Dadurch ist der Grundstein füür weitergehende Charakterisierungs- und Kristalli-sationsexperimente gelegt. Die in dieser Arbeit etablierte Kombination von Hochdurch-satzmethoden mit klassischen Vorgehensweisen zur Proteincharakterisierung lassen sich leicht auf anderen Membranproteinklassen bertragen und die Geschwindigkeit der ver-schiedenen Schritte bis zur Strukturlösung stark beschleunigen.

Download full text files

  • gesamtdokument.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marc Böhm
URN:urn:nbn:de:hebis:30-63190
Referee:Clemens GlaubitzORCiD, Carola HunteORCiDGND
Advisor:Clemens Glaubitz
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/04/30
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2009/04/30
Page Number:181
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung. Die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:416831923
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG