Struktur-Wirkungsbeziehungen von N-Methyl-D-Aspartat (NMDA)-Rezeptor-Untereinheiten

  • Der zur Familie der ionotropen Glutamatrezeptoren gehörende N-Methyl-DAspartat (NMDA)-Rezeptor ist maßgeblich an der Weiterleitung erregender Signale zwischen Nervenzellen beteiligt. Er spielt sowohl physiologisch bei z.B. Vorgängen des Lernens oder der Gedächtnisbildung, als auch pathophysiologisch bei neurologischen Erkrankungen eine entscheidende Rolle. NMDA-Rezeptoren sind tetramere Membranproteine, welche aus den homologen NR1-, NR2A-NR2D- sowie NR3A- und NR3B-Untereinheiten aufgebaut sind. Die Untereinheiten sind modular aus jeweils vier verschiedenen Domänen aufgebaut, die spezifische Rollen beim Aufbau und der Funktion der Rezeptoren erfüllen. Konventionelle NR1/NR2-NMDA-Rezeptoren bestehen aus zwei Glyzin-bindenden NR1- und zwei Glutamat-bindenden NR2-Untereinheiten. Sie werden nur durch gleichzeitiges Binden der Agonisten Glutamat und Glyzin effizient aktiviert. Ziel der vorliegenden Arbeit war, den Einfluss der extrazellulären N-terminalen Domänen (NTDs) auf die Assemblierung, Funktion und allosterische Modulation von rekombinanten NR1/NR2 NMDA-Rezeptoren mittels biochemischer und elektrophysiologischer Methoden zu untersuchen. Deletionsexperimente zeigten, dass die NTDs von NR1- und NR2A- bzw. NR2B-Untereinheiten die hochaffine, allosterische Zn2+- und Ifenprodil-Hemmung bestimmen, nicht aber für die Bildung funktioneller Rezeptoren von Bedeutung sind. Die NR2-NTDs stellen zusätzlich eine entscheidende strukturelle Determinate für die unterschiedliche Glyzinaffinität von NR1/NR2A- und NR1/NR2B-Rezeptoren dar. Ein zweiter Aspekt war die funktionelle Charakterisierung von NMDA-Rezeptoren, welche aus NR1- und NR3-Untereinheiten aufgebaut sind. Diese exzitatorischen NR1/NR3-Rezeptoren werden ausschließlich durch den Neurotransmitter Glyzin aktiviert und generieren nur sehr kleine Agonistaktivierte Ströme im Vergleich zu NMDA-Rezeptoren vom NR1/NR2-Typ. Es wurde gefunden, dass die Glyzinbindung an die NR1- und NR3-Ligandenbindungsdomänen (LBDs) entgegengesetzte Wirkungen auf die Rezeptorfunktion zur Folge hat. Während die NR3-LBD essentiell für die Aktivierung des Rezeptors ist, bewirkt Glyzin über die NR1-LBD eine Hemmung der NR1/NR3-Rezeptoren. Das erklärt die geringe Effizienz der Rezeptoraktivierung durch Glyzin. Weiterhin zeigen die Ergebnisse zum ersten Mal, dass Zn2+ an diesen Rezeptoren als Agonist und positiver Modulator wirkt und in Kombination mit einem NR1-Antagonisten die Glyzin-aktivierten Ströme >120-fach in supralinearer Weise potenzieren kann. Mutationsanalysen ergaben, dass die NR1-LBD für die Zn2+-Aktivierung und –Potenzierung verantwortlich ist. Da die physiologische Rolle von NR1/NR3-Rezeptoren noch nicht eindeutig geklärt ist, könnte die supralineare Potenzierung eine Strategie darstellen, diesen unkonventionellen NMDA-Rezeptor in zukünftigen Untersuchungen besser zu detektieren und zu charakterisieren. Zusammenfassend liefern die in dieser Arbeit gewonnenen Erkenntnisse zu Struktur-Funktionsbeziehungen in NMDA-Rezeptoren auf Ebene der NTDs und LBDs einen wichtigen Beitrag für das Verständnis der Pharmakologie dieser Rezeptorfamilie. Diese Ergebnisse können für die Entwicklung neuer neurologischer Therapeutika genutzt werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian Madry
URN:urn:nbn:de:hebis:30-62101
Referee:Heinrich BetzGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/01/27
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2008/12/18
Release Date:2009/01/27
HeBIS-PPN:208562605
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht